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ABSTRACT.  

The nationally implemented Composite to change (C2C) protocol is intended to detect 

and classify dominant large-scale stand replacing change types (e.g., fire, road, harvest) 

that are of national relevance. Other changes, such as regionally important change types 

or finer change features, may not be captured by this method. In the Alberta Oil Sands 

Region (AOSR), changes from resource exploration and extraction activities dominate 

the landscape and are the primary driver of boreal forest change in this area. This project 

is interested with the detection and classification of seismic lines from Landsat time 

series (LTS) data. These features represent one of the most abundant change types, can 

occur at very high densities, have proliferated across the landscape in recent decades, and 

can have severe ecological impacts (e.g., impact to federally protected boreal caribou 

population).  

Whereas the C2C protocol has been found to yield high detection and classification 

accuracies for fire, road, and harvest change types, seismic lines have not been accurately 

detected, nor are they included in classification. This project will confirm that detection 
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and classification accuracies of fire, road, and harvest objects generated by the C2C 

protocol are consistent with previous studies. However, it will demonstrate that an 

alternate threshold for detection will yield higher detection accuracy for seismic lines 

relative to those of C2C protocol objects. Furthermore, it will show that these features 

have distinguishing geometrical, spectral, and descriptive trend analysis characteristics 

that will enable this new change type to be included in classification. The ability of an 

alternate threshold to detect seismic lines unequivocally demonstrates that the there is an 

opportunity to enhance the C2C protocol. Therefore, it is recommended that an enhanced 

C2C protocol prioritize the inclusion of seismic lines in future iterations. 
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1 INTRODUCTION.  

Remotely sensed data can be used to support goals associated with change detection and 

classification, environmental or ecological monitoring, natural resource management, 

guide carbon budgeting policies (Blaschke 2010; Banskota et al 2014), among other 

applications. This project is interested in the ability of remotely sensed LTS data to be 

used to detect and classify seismic lines. Seismic lines are linear features that vary in 

width (e.g., one to eight metres) and are associated with the exploratory phase of resource 

extraction activities. Resource extraction activities represent an important contributor to 

boreal forest change (Audet et al 2015). It is important to detect and classify seismic lines 

high accuracy as these features have proliferated in recent decades with the development 

of the resource extraction sector in the AOSR, can occur at high densities, persist over 

many years, and have ecological impacts (Chen et al 2014; Pigeon et al 2016; van Rensen 

et al 2015).  

Seismic lines are an important type of change. From an ecological perspective, a change 

is an alteration to ecosystem properties over time and any feedback loops that may be 

entrained (Kennedy et al 2014). This definition is contrasted to the remote sensing 

understanding of a change, which is some measurable difference between two or more 

images (Kennedy et al 2014). For instance, a comparison of two images taken at different 

times allows for changes to be detected, and the inclusion of even more data can provide 

additional insight, such as persistence and rate of change (White et al 2011). In this 

project, a change is detected using the normalized burn ration (NBR) vegetation index 

and is understood as the negative segment in a pixelôs trajectory through time, which 

represents a loss of vegetation. 
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While seismic lines may be captured by data with a finer spatial or temporal resolution, 

LTS imagery is appealing for several reasons. It is available across Canada and offers a 

long record spanning many decades (White and Wulder 2013). Therefore, LTS data can 

support large-scale and long-term change detection, classification and monitoring efforts. 

Furthermore, this is the data source already being used in the nationally implemented 

C2C protocol (Hermosilla et al 2015a). As the ultimate objective of this project is to 

make recommendations for an enhanced C2C protocol, the methods and data used herein 

reflect an attempt to deviate minimally from those of the C2C protocol. 

The C2C protocol employs a detection threshold that will capture features of interest 

(fire, road, harvest), while being sufficiently robust as to minimize noise. Noise refers to 

detected objects that do not represent any actual change on the ground. However, this 

threshold yields low detection accuracy for seismic lines.  

It is hypothesized that:  

(i) the detection and classification accuracy of C2C objects for fire, road and 

harvest within the selected study area in the AOSR will be consistent with 

previous studies,  

(ii)  seismic lines can be detected from LTS imagery using an alternate threshold 

for detection with higher accuracy relative to the C2C protocol, and  

(iii)  these features can subsequently be included in classification as they have 

distinguishing characteristics that can be described by LTS data. 

Generally, seismic lines are finer, both in terms of spatial extent and spectral difference 

from pre-change conditions, relative to the change types intended for capture by the C2C 
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protocol (fire, road, harvest). To demonstrate that seismic lines can be detected from LTS 

imagery with higher accuracy than achieved by the C2C protocol, objects representing 

annual change features will be created using experimental thresholds. These objects will 

be assessed using reference data randomly selected by feature identification (FID) 

numbers to determine accuracy, and compared to the accuracy of C2C objects. Although 

the C2C protocol is designed for national implementation and is concerned with 

dominant change types at this scale, certain regionally important change types and finer 

change features that have a significant cumulative impact (e.g., seismic lines) are worthy 

of inclusion. 

The remainder of this paper will proceed as follows. First, it will  provide a description of 

the data inputs, including the C2C products and reference data. This is followed by a 

summary of the methods used in the C2C protocol to detect and classify changes, and 

those used in this project. The subsequent results are presented with reference to this 

projectôs three hypotheses. The penultimate section interprets the results, again with 

reference to the hypotheses, before identifying challenges encountered in this project and 

providing suggestions for a refinement of methods to overcome these challenges, 

highlighting the relevance of the results from both a remote sensing and ecological 

perspective, and finishing with several suggestions for future research. The concluding 

section returns to the underlying objective of this project, which is to demonstrate that 

seismic line features can and should be included in future iterations of the C2C protocol. 
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2 STUDY AREA. 

A study area in the AOSR of approximately 5,000 square kilometres was selected to 

assess the performance (i.e. detection and classification accuracy) of the C2C protocol 

and of a novel threshold for change detection introduced in this project. The study area 

encompasses the small village of Conklin, Alberta, (population 211, per 2011 census) and 

is located approximately 150 kilometres from Fort McMurray, the major population hub 

within an area of exploration and recent extraction activities. Figure 1 provides a visual 

depiction of the study area with reference to provincial boundaries, selected cities, the 

extent of oil deposits in the AOSR, and the extent of the boreal forest area. A great 

quantity and variety of both natural and anthropogenic change events have occurred in 

the study area between 1984 and 2012, and it remains a dynamic region with ongoing and 

significant future or expected changes in the coming decades. 

 

 

Figure 1. Map of study area. Dark grey area represents extent of the AOSR, and light grey area represents 

the extent of the boreal forest (adapted from Audet et al 2015, p 365) 
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Ecologically, the study site is in the Central Mixedwood Natural Subregion of the 

Albertan boreal forest, the largest natural subregion in Alberta. This subregion is 

characterized by undulating plains and dominated by aspen (Populus tremuloides) and 

white spruce (Picea glauca) tree species, with jack pine (Pinus banksiana) stands in some 

areas (Natural Regions Subcommittee 2006). Several lakes, the largest being Winefred 

Lake, and other waterbodies are included within the study area. Cretaceous shales make 

up most of the subregionsôs underlying bedrock (Natural Regions Subcommittee 2006), 

and it is within the Lower Cretaceous McMurray Formation that bitumen is present 

(Gillanders et al 2008). Surficial geology is mixed and variable across the Central 

Mixedwood Natural Subregion, most soils are either luvisols or brunisols, but other soil 

classes are also present (Natural Regions Subcommittee 2006). The mean annual 

temperature of this subregion is 0.2C̄, with means of 15.9̄C and -18.7̄ C for its warmest 

and coldest months respectively (Natural Regions Subcommittee 2006). The climate is 

considered to be subhumid and subarctic (Audet et al 2015). 

Economically, the study area is within the AOSR which contains an estimated 1.6 trillion 

barrels of oil (Audet et al 2015) in deposits covering approximately 140,200 square 

kilometres (Gillanders et al 2008). Bitumen extraction began in the AOSR in 1967, and 

expanded significantly between 1978 and 2003 (Audet et al 2015). The selected study 

area is well suited for a study concerned with the detection and classification of seismic 

lines as these features, and other changes related to resource extraction activities, are 

abundant. Three leases - Devon Pike, Devon Jackfish and Nexen Leismer - are located 

within the selected study area, suggesting that additional change events will result from 
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future exploration and bitumen extraction activities. Although the study area used in this 

project represents a small portion of the AOSR, the results are significant to other areas 

of Alberta with similar human footprint disturbances and infrastructure. 
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3 DATA USED. 

In this project, the detection and classification accuracy of products produced by the 

Composite2Change (C2C) protocol were assessed using reference data. Reference data 

were also used to assess a novel change detection method introduced in this project, and 

for training and validation purposes. This section provides an overview of the data used 

in this project. 

 

3.1 Landsat, BAP composites and C2C products. 

The Composite2Change (C2C) protocol has been used to detect and classify national-

level Canadian landscape changes using the historical archive of LTS imagery and a 

change feature hierarchy (Hermosilla et al 2015a). Best available pixel (BAP) composites 

and C2C products for the province of Alberta between 1984 and 2012 were made 

available for this project by the Canadian Forest Services, a sector within the department 

of Natural Resources Canada. Spatially, only data occurring within the selected study 

area were considered and, temporally, all years were included in this study. 

While the Landsat series of satellites has been continuously collecting data since the 

launch of its first satellite in 1972, the Thematic Mapper (TM) and Enhanced Thematic 

Mapper Plus (ETM+) sensors were launched with Landsat-4 in 1982 and Landsat-7 in 

1999 respectively (Wulder et al 2012). LTS temporal and spatial resolutions are well-

suited to large area land cover mapping, change detection and monitoring (e.g., Banskota 

et al 2014; Gómez et al 2011; Franklin et al 2015). Landsat data have a spatial resolution 

of 30 metres with a 185 kilometre wide swath, a temporal resolution equal to the 
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satelliteôs maximum revisit period of 16 days, and Landsat scenes cover an area of 170 x 

185 kilometres (White and Wulder 2013). Landsat TM and ETM+ both include one 

thermal band and six spectral bands corresponding to different portions of the 

electromagnetic spectrum, Landsat ETM+ also includes a panchromatic band (White and 

Wulder 2013). A summary of Landsat TM and ETM+ specifications is provided in Table 

1. 

 

Table 1. Specifications of Landsat satellite sensors (adapted from White and Wulder 2013, p 21). 

Sensor Band  Name Range (ɛm) 

TM 1 Blue 0.45 ï 0.52   

TM 2 Green 0.52 ï 0.60  

TM 3 Red 0.63 ï 0.69  

TM 4 Near infrared 0.76 ï 0.90 

TM 5 Shortwave infrared I 1.55 ï 1.75  

TM 6 Thermal 10.40 ï 12.50  

TM 7 Shortwave infrared II 2.08 ï 2.35  

TM and ETM+ 8 Panchromatic 0.52 ï 0.90 

 

The spectral bands of Landsat TM and ETM+ (bands 1 to 5 and 7) were provided 

separately in raster file format for all years inclusive of 1984 and 2012. Twenty-nine files 

per band were provided, for a total of 174 files. Annual best-available pixel (BAP) 

composites, generated using bands 1, 2 and 3 were also provided in raster format, for a 

total of total of twenty-nine BAP composite raster files. Select descriptive metrics 

produced by the C2C protocol to characterize a detected change event were also 

provided. One raster file was provided for each of the thirteen descriptive metrics. A 

summary of descriptive metrics is provided in Table 2 in a later section (Methodology, 

C2C Protocol). 
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Change objects were provided in vector file format, with one file produced annually for 

all changes inclusive of 1985 and 2011, totalling twenty-seven vector format files. For 

instance, the change objects of any year represent features that had not been present in the 

LTS imagery from the preceding year. In other words, annual change layers represent 

changes from one year to the next, rather than the cumulative changes detected up until 

that point. The attribute table for each layer provides supplementary information for each 

change object including area, and relative distribution of the number of votes attributed to 

each change class by the random forest classifier. Classification confidence is high when 

the ratio between the top two classes is less than 0.4, and objects are committed to the 

change type class that received the greatest number of votes. While objects with low 

confidence attributes are ñunclassifiedò, the attribute table indicates the most likely 

candidate class. All change objects represent change events that affected an area greater 

than 0.5 hectares, the minimum mapping unit (Hermosilla et al 2016). 

 

3.2 Reference data. 

Multiple reference datasets were collected to assist with a preliminary assessment of the 

C2C protocolôs performance, and later to assist with creation of a training and validation 

sample set. First, where changes are detected, objects are produced by the C2C protocol 

and subsequently attributed to change type, including fire, road, harvest, or non-stand 

replacing change feature classes (Hermosilla et al 2015a; Hermosilla et al 2015b). 

Reference data for fire, road and harvest were required to ensure that C2C detection and 

classification accuracies within the selected study area were consistent with previous 

C2C protocol applications in British Columbia, northern Saskatchewan and the Hearst 
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Forest Management Area in northern Ontario (Franklin et al 2015; Hermosilla et al 

2015a; Jarron et al 2016). Second, reference data were required to assess the detection 

accuracy of new series of change objects that were generated following the application of 

a novel threshold for change detection. Reference data were then used to train a random 

forest classification algorithm and validate the classification accuracy of the new series of 

change objects. 

Reference data were acquired from organizations through their own online portals (e.g., 

Alberta Biodiversity Monitoring Institute (ABMI)), and from provincial and national 

agencies via open data portals (e.g., GeoDiscover Alberta). Reference data collected 

through survey methods or aerial imagery interpretation was favoured. Suitable data 

overlapped spatially with the selected study area and temporally with the annual BAP 

composites and C2C products provided. 

 

3.2.1 Fire. 

Spatial fire data were acquired directly from Alberta Wildfire, the wildfire branch of the 

Alberta Ministry of Agriculture and Forestry, via their online data portal. Wildfire data 

are in vector format, objects represent discrete wildfire events occurring in Alberta 

between 1931 and 2015. Object accuracy and precision is a function of the original 

method of data collection and subsequent data transfer (e.g., older hand-drawn wildfire 

perimeters were later digitized). Additional categorical information available for each 

object in the attribute table includes wildfire class based on area, burn intensity, fire year, 

data capture year, and fire perimeter data source. 
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3.2.2 Harvest. 

Harvest data that overlapped spatially and temporally with the selected study area were 

not available through the Alberta Vegetation Inventory (AVI), produced by the Alberta 

Ministry of Agriculture and Forestry. While harvested areas occur within the study area, 

these sites did not meet any of the three minimum size criteria for inclusion by the 

Alberta Ministry of Agriculture and Forestry. Forest harvest data were available in vector 

file format in the 3x7 kilometre Human Footprint (HF37) dataset, produced by Alberta 

Biodiversity Monitoring Institute (ABMI). This dataset includes a series of rectangular 

sampling plots wherein all human footprint elements are delineated (Sólymos et al 2015). 

Human footprint features include all instances where the removal of natural land cover 

types for industrial, recreational, or residential purposes occurred over an extended 

period. Among the attributes included in the HF37 dataset are cut blocks, which are areas 

where industrial tree harvests have occurred. This dataset is produced using a 

combination of available aerial imagery, SPOT6 satellite imagery, IRS satellite imagery, 

and other data sources (Sólymos et al 2015). The HFI37 dataset is coincident with later 

portions of the LTS used in this project; it is available for 1999, 2001, and annually 

between 2004 and 2012. 

 

3.2.3 Road. 

Two complementary road datasets were acquired for this project: the National Road 

Network (NRN) produced by the Ministry of Natural Resources Canada; and the Human 
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Footprint Inventory (HFI) produced by ABMI. Interpretation of SPOT6 satellite imagery 

was used to produce the HFI, and the NRN is created using GPS, surveying, and imagery 

interpretation from multiple sources. Descriptive information is provided in both datasets, 

however the characterization of roads differs between the two. For instance, the HFI 

dataset includes vegetated or hard as surface types, whereas NRN data includes paved or 

unpaved. Thus, a gravel road is attributed to the hard surface class in the HFI dataset, and 

the unpaved class in the NRN dataset. The NRN dataset has been updated on an annual 

basis since 1979 and includes a large amount of descriptive information as it is intended 

to satisfy various information needs. The HFI dataset includes more road types, including 

some roads on private property (i.e. recreational trails and resource roads), and the 

inclusion of a greater diversity of road types represents a greater road areal extent. The 

HFI dataset is only coincident with later portions of the LTS used in this project (2007, 

2010, 2012). While roads from ABMI dataset are more detailed due to the inclusion of 

more road types, the revisit period of the NRN dataset is superior. Therefore both datasets 

were included in this project and used in conjunction to obtain the best information. 

 

3.2.4 Seismic lines. 

As with much of the reference data, seismic line data were available for latter portion of 

the LTS used in this project. The HF37 dataset described earlier includes seismic and is 

available for 1999, 2001, and annually between 2004 and 2012. A complementary 

seismic line dataset produced by ABMI and acquired through the Boreal Ecosystem 

Recovery and Assessment (BERA) research project was also used. The BERA dataset 

includes all seismic lines occurring within the study area, and is not limited to those 
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within sample plots. The BERA dataset metadata indicates that is an aggregated version 

of other available ABMI datasets. Displaying the dataset and its attribute table shows that 

it has been reduced to contain only seismic lines, and expanded to include the full spatial 

extent of the study area. Seismic line data are available for 1998, 2001, 2004, 2006, 2008, 

2009 and 2011 in this dataset. 

 

3.2.5 Waterbodies.  

Waterbody reference data were extracted from the ABMI produced Wall-to-Wall Land 

Cover (W2WLC) dataset, and used to produce a mask to exclude waterbodies from 

analysis as the interest of this project are change events occurring on land. The W2WLC 

dataset was produced in 2000 and in 2010. The 2000 W2WLC dataset was derived from 

two other raster products (Canadian Forest Serviceôs Earth Observation for Sustainable 

Development land cover classification, and Agriculture and Agri-Food Canadaôs Land 

Cover for Agricultural Regions of Canada classification) which were produced using 

LTS imagery. Thus, any errors in these initial raster products are incorporated in this 

secondary product. The 2010 W2WLC dataset was produced directly from LTS imagery. 

While significant changes to some landcover type classes occurred between 2000 and 

2010, waterbody polygons for both years are nearly identical (0.01 % change in areal 

distribution per Castilla et al 2014). Waterbody polygons from the 2010 W2WLC dataset 

were selected for inclusion in this project. While changes associated with ephemeral 

wetlands have been found to be significant in other areas (e.g., Ahmed et al 2017 found 

that wetlands accounted for 12% of change in the Hearst Forest Management Area), these 

types of changes are not the focus of this project.  
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4 METHODOLOGY.  

In this project, the performance of the C2C protocol was assessed by determining the 

resulting detection and classification accuracies of this method. This was intended to 

confirm that the accuracies for certain types of changes within the selected study area are 

consistent with the results presented in previous studies, and to demonstrate that certain 

human-footprint development and infrastructure features that experience consistently 

lower accuracies.  Seismic lines are among those features, yet within the selected study 

area and the AOSR more broadly these features are an important element of forest 

change. The main objective of this study was to develop a methodology to improve 

detection of seismic line features that occur between 1984 and 2012, and include them in 

the broader C2C disturbance change classification hierarchy. It is recognized that the 

C2C protocol was designed to capture large-scale change associated with carbon-budget 

analysis on a national scale. However, the finer scale features ï much more subtle, 

typically only regionally-important, and often not óstand-replacingô ï are also of interest 

for refinement and improvement of the use of the protocol. Therefore, the following 

section will first describe the methodology of the C2C protocol, followed by the methods 

used in this thesis research project to consider the smaller, finer, and more subtle change 

features associated with seismic exploration and development. 

 

4.1 C2C protocol. 

The C2C protocol methodology involves LTS pre-processing and compositing, change 

detection, change characterization, change classification, and accuracy assessment. These 
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stages are summarized in Figure 2, have been described in a series of publications (e.g., 

Hermosilla et al 2015a, Hermosilla et al 2015b, and Hermosilla et al 2016), and are 

briefly summarized here. 

 

Figure 2. C2C workflow (from Hermosilla et al 2016, p 5). 

 

Hermosilla et al (2015a) describe the method used to create BAP composites. Candidate 

LTS data are assessed for inclusion in the protocol based on cloud cover (less than 70%) 

and date (August 1 ± 30) to correspond with the terrestrial growing season. The Landsat 

Ecosystem Disturbance Adaptive Processing System (LEDAPS) algorithm is applied to 
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generate atmospherically corrected surface reflectance values for Landsatôs optical bands, 

followed by the Fmask algorithm to remove unwanted atmospheric elements and water 

bodies. Once pre-processing is complete, annual best-available pixel (BAP) composites 

are creating using a series of compositing rules whereby each pixel observation receives a 

score based on:  

(i) sensor,  

(ii)  image acquisition date,  

(iii)  distance to atmospheric perturbations, and  

(iv) atmospheric opacity.  

Noise detection and removal techniques assign anomalous pixels a no data value, and an 

infilling technique assigns synthetic values to these data gaps and other areas of no data 

based on spatial and temporal pixel trends (Hermosilla et al 2015a). 

Using these BAP composites, changes are first detected in the temporal domain using a 

bottom-up breakpoint detection algorithm (Hermosilla et al 2015a). This analysis is 

performed over the Normalized Burn Ratio (NBR) and follows each pixelôs spectral 

trajectory through time to identify spectral trends and breakpoints (Hermosilla et al 

2015a). NBR uses bands 4 and 7, the near and short-wave infrared respectively, which 

are the least sensitive to atmospheric and radiometric variability, and is considered an 

appropriate vegetation index for general change analysis across forested regions (Li et al 

2014). NBR layers were produced as part of this project to support the implementation of 

a novel threshold for change detection, additional details regarding the methods to 

produce these layers are provided in a subsequent section.  
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Hermosilla et al (2016) define breakpoints as the segment of a pixelôs slope through time 

that deviates from its expected range when NBR values are plotted against year. Trends 

are described by Hermosilla et al (2015a) refer to one of four distinct patterns observed in 

all pixels:  

(i) no breakpoints,  

(ii)  multiple breakpoints, no negative slopes,  

(iii)  one breakpoint, negative slope, and  

(iv) multiple breakpoints, at least one negative slope.  

A contextual analysis is then performed in the spatial domain to ensure that cohesion of 

spatially discordant pixels representing the same change event (Hermosilla et al 2015a). 

At this stage, change events representing an area less than 0.5 hectares are removed; a 

minimum mapping unit of 0.5 hectares is used in support of the information needs by the 

Canada National Forest Inventory (Hermosilla et al 2015a). 

Hemosilla et al (2016) describe the set of descriptive metrics generated, these metrics 

characterize:  

(i) negative segments, representing a change event,  

(ii)  pre-change conditions, and  

(iii)  post-change conditions.  

Pre- and post-change metrics include change magnitude, persistence and evolution rate. 

Negative segment (change) metrics include change year, persistence, magnitude 

variation, and change rate. The change year metric applies to the greatest change, which 

is the negative segment in a pixelôs trajectory with the greatest difference between pre- 
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and post-change event NBR values. In other words, the greatest change refers to the 

change event with the greatest magnitude of change between pre- and post-change NBR 

values.  

Where multiple breakpoints, representing separate change events, are present in a pixelôs 

spectral trajectory first and last change year change persistence metrics are generated to 

describe these additional breakpoints (Hermosilla et al 2016). A set of spectral metrics 

(e.g., average pixel values, range of pixel values) are generated using NBR and 

components of the Tasseled Cap (brightness, greenness and wetness) and selected 

spectral bands (3-5,7) (Hermosilla et al 2015b). Geometrical metrics are also generated 

based on the geometry and shape complexity of change events (Hermosilla et al 2015b). 

This series of descriptive trend analysis, spectral and geometrical metrics are summarized 

in Table 2. These metrics provide information about trends and are used to support 

subsequent attribution of change objects to a change type class. 

 

Table 2. C2C metrics. Summary of descriptive, spectral and geometrical metrics produced by the C2C 

protocol and the data sources used to create these metrics (adapted from Hermosilla et al 2015, p 124; and 

Hermosilla et al 2016, p 7). 

Metric type Name Source(s) 

Geometrical Area 

Perimeter 

Compactness 

Shape index 

Fractal dimension 

 

Trend analysis Average change magnitude variation 

Pre-change magnitude variation 

Pre-change duration 

Pre-change evolution rate 

Post-change magnitude variation 

Post-change duration 

Post-change evolution rate 

Greatest change year (breakpoint) 

Greatest change persistence (duration) 

B4, B5, B7, NBR, TCG1, TCW2, TCB3 

NBR 

 

NBR 

NBR 

 

NBR 

NBR 
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Greatest change magnitude variation 

Greatest change rate 

First change year (breakpoint) 

First change persistence (duration) 

Last change year (breakpoint) 

Last change persistence (duration) 

NBR 

NBR 

NBR 

 

NBR 

 

Spectral Average spectral value pre-change 

Average spectral value post-change 

Standard deviation value post-change 

Average pixel series value 

Standard deviation of pixel series values 

Range of pixel series values 

b4, b5, b7, NBR, TCG, TCW, TCB 

b4, b5, b7, NBR, TCG, TCW, TCB 

b4, b5, b7, NBR, TCG, TCW, TCB 

b4, b5, b7, NBR, TCG, TCW, TCB 

b4, b5, b7, NBR, TCG, TCW, TCB 

b4, b5, b7, NBR, TCG, TCW, TCB 
1 TCG : Tasseled cap greenness  
2 TCW : Tasseled cap wetness 
3 TCB : Tasseled cap brightness 

 

Object-based change classification is performed using a hierarchical random forest 

classifier. Objects are attributed to one of four change type classes (fire, road, harvest, 

non-stand replacing change) relevant for forest change reporting and monitoring, or to an 

unclassified class (Hermosilla et al 2016). The random forest classifier also produces a 

variable importance measure and confidence indicator for each class. The variable 

importance value is useful to identify the predictive ability of variables (e.g., a significant 

decrease in accuracy would result from the removal of variables with high predictive 

power) (Hermosilla et al 2015b). The confidence indicator, which is the ratio between the 

two classes that receive the most votes, identifies objects that were not readily attributed 

to a change type class (Hermosilla et al 2015b). Objects with low confidence attributes 

(ratio value higher than 0.4) were attributed to unclassified. The unclassified class 

includes objects representing rare change events and those that could not be committed to 

any one change type class with reasonable confidence (Hermosilla et al 2015b). Once 

change objects are attributed to a change type class (fire, road, harvest, stand-replacing 

change) the detection and classification accuracies are assessed. 
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4.2 Methods of analysis. 

The main interests of this thesis research project was to determine specific change class 

detection and classification accuracy, and to determine whether a novel threshold could 

be implemented to improve detection and classification accuracies for seismic lines over 

those obtained using the C2C protocol. This section describes the methodology used to 

assess the performance of C2C protocol by determining the detection and classification 

accuracies of fire, road, and harvest change type classes within the selected study area. 

Although not included among those change types of identified by the C2C protocol, the 

detection accuracy obtained for seismic lines is also assessed. This section then describes 

the methodology implemented to prepare data for analysis, apply an alternate threshold 

and contextual analysis to detect change events in the temporal and spatial domains, 

prepare training and validation samples and perform a classification of change objects, 

and finally how results from this analysis were assessed and compared to those obtained 

using the C2C protocol. The methodology and workflow used in this project are 

described in Figure 3. 
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Figure 3. Methods workflow. Flowchart providing an overview of methods used in this project. 

 

4.2.1 Reference data pre-processing. 

Collected reference data were assessed for inclusion in this project based on their spatial 

and temporal extent, revisit frequency, and source. Suitable data overlapped spatially 

with the selected study area, and temporally with LTS imagery and C2C products. 

Reference data were clipped as required using ArcGIS Desktop to ensure that the extent 

mirrored that of the selected study area. Where multiple datasets were available those 

with higher revisit frequency (e.g., annual data included rather than data collected every 

ten years) were selected preferentially. Reference data collected through survey methods 

or aerial imagery interpretation were also prioritized. 
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This thesis research project was principally interested in change events occurring on land 

in a forested environment; therefore, waterbodies were excluded from analysis for 

simplicity (even though marginal and ephemeral hydrological changes can be expected to 

impact forest units ï such features have been analyzed elsewhere, e.g., Ahmed et al 

2017). Waterbody reference data are included in the Wall-to-Wall Land Cover dataset 

produced by ABMI in 2000 and 2010 in vector file format. As this dataset contained 

multiple landcover class types, all waterbodies attributes were selected and exported to a 

separate vector file using ArcGIS Desktop, and subsequently converted to a raster file 

format to be used as a mask. 

 

4.2.2 Assessment of C2C protocol performance and seismic line detection. 

A preliminary assessment of the data was conducted to verify whether the C2C protocolôs 

detection and classification accuracies for fire, road and harvest change type classes 

within selected study area in the AOSR were consistent with previous studies. Detection 

of seismic line features, while not included as a change type in the C2C protocol, were 

also assessed. Assessment of all features was limited to new change events due to a lack 

of reference data regarding changes to existing features. A visual assessment of the BAP 

composites suggests that modifications to existing change features were present 

predominantly to road change types, occasionally with seismic line and harvest change 

types, and absent from fire change types. For instance, a road segment may be detected 

both when it was newly constructed and again at some later time when the same road 

segment is widened (e.g., single to double lane) or the roadôs surface material was 

changed (e.g., herbaceous to gravel). In this example, there would be two changes 
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detected, the first change would represent the new road and the second change would 

represent a modification to the existing road. For the purpose of this analysis, based on an 

assessment of the BAP composites, the exclusion of changes to existing features is 

acceptable as the relative contribution of these changes in the preliminary assessment is 

unlikely to produce significantly different detection or classification accuracies. 

Annual reference data FID numbers for each change type class were randomly selected 

using a non-repeating and non-sequential random number generator in R. Reference data 

to be included in the assessment were stratified by year, rather than randomly selecting 

FID numbers from the complete time series, in an effort to avoid sampling errors. For 

instance, if a disproportionate amount of FID numbers were randomly selected from the 

same year, and the BAP composite from that year happened to be significantly better or 

worse (e.g., substantially more or less data gaps and proxy values required in 

compositing), the results would over- or under-estimate the C2C protocolôs performance. 

Stratifying sampling by year attempts to address the risk of over- or under-estimating 

detection and classification accuracies obtained by the C2C protocol. 

The proportion of reference data used to assess the C2C protocolôs detection and 

classification accuracy varied between change type classes. For instance, there is a 

greater amount of new roads relative to fire events that occurred in the selected study 

area, thus the relative proportion of fire reference data used was greater than that of 

roads. Similarly, the proportion of reference data used varied within the same change 

type class between years. For instance, when there was a single fire event that occurred 

within the study area in a year all data from that year was included in the assessment, 

whereas a year that had multiple discrete fire events would have a lesser proportion of 
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reference data used. The proportion of reference data FID numbers included in the 

preliminary assessment was a function of the annual number of objects for each change 

type class, and their variability. The stopping criteria for inclusion of supplementary FID 

numbers was determined by the greatest number of FID numbers required to produce 

consistent results. In other words, no additional FID numbers included in the assessment 

when the marginal difference from the addition of one more FID number was not 

significant. While more FID numbers could have been included, the results would not 

differ significantly. 

Reference data, annual C2C change objects, and annual BAP composites were displayed 

in tandem in ArcGIS Desktop to facilitate comparison. In instances where reference data 

were unavailable on an annual basis, or where date of data capture was not coincident 

with date of change event, BAP proxies from other years were used to identify when a 

change event could first be distinguished. For instance, harvest data were available for 

1999, 2001, and annually between 2004 and 2012. A change event represented by harvest 

features in the 2004 layer may have occurred in any year between 2001 and 2004. Once 

the year of a change event was determined, the C2C change objects were verified for the 

corresponding year. If there was no C2C change object that corresponds to the change 

feature in the reference data, C2C change objects from preceding and following years 

were verified.  

Although the interest of this study is the accuracy of detection, a reasonable precision 

threshold is also required to assess detection and classification accuracies. In the temporal 

domain, a change event was considered detected if it occurred in the correct year or in the 

preceding or following years. Change objects may have been misattributed to another 
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year due to the use of proxies where the change event occurred, or when the date of the 

change event was after the date used to collect LTS imagery and produce the BAP 

composites (August 1 ± 30 days). Similarly, in the spatial domain, change events were 

considered detected if more than half of the area from the reference data was included in 

the C2C change product. It is expected that the perimeters of change features on the 

ground will vary from those of the detected objects because of the spatial resolution of 

LTS imagery (Komers and Stanojevic 2013). A minimum overlap of 50% between 

detected change objects and change features on the ground is consistent with recent 

studies comparing reference data to C2C change objects (e.g., Jarron et al 2017), and 

Hermosilla et al (2015a) indicated that change objects are considered reliable with a 

minimum spatial and temporal correspondence of 50%. For instance, if a road segment 

from the reference data appeared discontinuous along its length, but the majority of its 

area was included in the C2C change objects, it was considered detected.  

The randomly selected reference data FID numbers for each change type class were 

compared to C2C objects and BAP composites. Detection assessment results were 

inputted in an Excel spreadsheet. For each of the randomly selected FID numbers the 

following supplementary information was included in the spreadsheet:  

(i) visibility of change event in BAP composite (yes or no),  

(ii)  if visible, year in which change event is first appear,  

(iii)  coincidence in C2C change objects (yes or no), and  

(iv) to what year is a C2C change attributed to (year matching reference data 

or ± one year).  
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Classification assessment results were also inputted in an Excel spreadsheet. When a 

change event was captured by the C2C objects, it was then attributed to a change class 

type using a hierarchical random forest classifier. For each C2C change object the change 

type class to which it was committed is noted. This spreadsheet allows the question of 

whether the classification of a C2C change object corresponds with the change class type 

of the reference data to be answered. Additional information that may inform why a 

change class type was not detected by the C2C protocol or why it may have been 

committed to the wrong change class type was also noted. This would include 

information regarding complex change events that include multiple change class types 

(e.g., roads within a harvested area), as well as change events that represent a smaller 

spectral change from the surrounding matrix (e.g., new roads in an area that had 

experienced a fire the previous year) that may represent a lesser difference than the 

detection threshold used by the C2C protocol. 

 

4.2.3 Normalized burn ratio. 

Landsat TM and ETM+ spectral bands are useful to characterize vegetation (Cohen et al 

2010). Both band 4 (near infrared) and band 7 (short-wave infrared) are associated with 

vegetation; band 4 with chlorophyll content and band 7 with water content in vegetation 

(Wulder et al 2009). For instance, in the near-infrared (band 4) portion of the spectrum 

live vegetation has high reflectance values, and in the short-wave infrared (band 7) 

portion of the spectrum live vegetation has low reflectance values. NBR values have been 

shown to be useful to detect changes to the trajectory of a pixel value over time that are 

associated with loss of vegetative cover (Chance et al 2016; Gómez et al 2016; Jarron et 
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al 2016) and are used by the C2C protocol (Hermosilla et al 2015a). Differences in NBR 

values are also used to perform breakpoint analysis in this project, therefore the 

production of annual NBR raster images and ȹNBR raster images are required to support 

change event detection and subsequent classification. NBR and ȹNBR layers were 

created in R. 

The input required to generate annual NBR layers is Landsat TM or ETM+ bands 4 (near 

infrared) and 7 (short-wave infrared) in raster format (Wulder et al 2009; Jarron et al 

2016). NBR values are computed using the following formula:  

 

NBR = (B4 - B7) / (B4 + B7)       (1) 

where B4 = band 4, and B7 = band 7 

 

This was completed in ArcGIS using the Raster Calculator tool. The output of this 

process is an annual layer of NBR values. This process is repeated for all years inclusive 

of 1984 and 2012, a total of twenty-nine raster files representing NBR values are 

produced. NBR values range from negative to positive one (-1 <= NBR <= 1). Negative 

NBR values represent areas of no vegetation (e.g., bare ground); whereas positive NBR 

values are indicative of healthy vegetation.  

NBR values can used in change detection by subtracting each NBR raster file from that 

of the previous year (Wulder et al 2009), generating ȹNBR raster files. This is 

accomplished using the following formula:  
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ȹ NBR = (NBRn-1 ï NBRn)       (2) 

where NBR = annual NBR values, n = year 

 

This was completed in R. The output of this process is a series of twenty-seven delta 

NBR raster files which represent the difference in NBR values between on year and the 

preceding year. The values in the ȹNBR raster images range from negative to positive 

two (-2 <= NBR <= 2). Negative ȹNBR values present in these layers suggest that a 

breakpoint, which is a negative segment in a pixelôs spectral trajectory through time, may 

be present. Zero ȹNBR values indicate that no change event occurred between two 

sequential years. The occurrence of positive ȹNBR values represent areas that are 

experiencing an increase in vegetation (e.g., post-disturbance recovery); note that these 

areas were not analyzed in the present thesis but will be the subject of a future 

investigation. The greater the absolute ȹNBR value, the greater the magnitude of change 

in NBR values between two years. Lower absolute ȹNBR values (e.g., those near zero) 

may not represent a discrete change event, however a gradual change can be identified 

when ȹNBR values exhibit a decreasing or increasing trend over multiple consecutive 

years. 

 

4.2.4 Threshold for detection. 

The goal of implementing a novel threshold for change detection is to improve the 

accuracy of detection for seismic lines relative to accuracy obtained by the C2C protocol, 

and then include detected seismic line objects in classification. Change events were 

detected in the temporal domain using ȹNBR values. The ȹNBR layers were exported 
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from R and opened in ArcGIS to obtain mean and standard deviation pixel values of the 

ȹNBR raster files, statistical information can easily be found in layer properties using 

ArcGIS. The rationale for using mean and standard deviation values to detect changes in 

a pixelôs trajectory through time is that the histogram of ȹNBR values exhibit a 

distribution that approximates normality, as typified by a bell-shaped curve. The majority 

of ȹNBR pixel values are approximately zero, and the frequency of pixel values decrease 

with distance from zero. A value of zero represents no change in NBR value between 

years. Therefore the detection of change events, represented by negative segments in a 

pixelôs trajectory, can be accomplished using the standard deviation to identify negative 

pixel values at some distance from the mean. While this project is interested in the 

negative segment of a pixel trajectory, the mean and standard deviation may also be 

useful for identifying positive segments. These positive segments would represent an 

increase in vegetation from one year to the next, rather than a removal of vegetation as is 

the case with negative segments. Identifying positive segments would facilitate 

regeneration (i.e. revegetation) monitoring, allow the persistence of a change to be 

identified (e.g., number of years following a change event required for a return to pre-

change conditions), among other applications. 

The mean and standard deviation values for each year were averaged, the averaged mean 

and standard deviation values were used to determine the thresholds for detection. It is 

possible that more accurate detection may be achieved by considering each change year 

independently, thus using the mean and standard deviation values for only the change 

year under consideration. The decision to use a sole averaged value is justified as this 

method reduces variance (Franklin et al 2005). Furthermore, the greatest difference 
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between the minimum or maximum mean value and the computed average of mean 

ȹNBR values is less that 0.1 %. The greatest difference for between annual and averaged 

standard deviations is above 0.1%. However, if the standard deviation from the ȹNBR 

layer representing new change events in 2002 is omitted the difference between annual 

and averaged ȹNBR values is less than 0.1 %. There was a significant fire event in 2002 

that covered an area approximately equal to one-fifth of the study area that created an 

abnormally large standard deviation relative to all over ȹNBR layers. 

Reclassified raster files were derived from ȹNBR raster files. Values of one were used to 

represent areas where changes were detected, and values of zero represent no change. 

Change events reclassified as one represent negative ȹNBR pixel greater than 0.5, 1.0, 

1.5, or 2.0 standard deviations from the mean. Four iterations were conducted in R using 

different distances from the mean as thresholds for change detection. The following 

formula represents the logic used to produce reclassified raster layers: 

 

0 = x ȹNBR < [ɛ ȹNBR + nů ȹNBR ] < X ȹNBR = 1    (3) 

where x = ȹNBR value of a given pixel, ɛ = mean, ů = standard deviation, n = number of 

standard deviations from the mean, 0 = no change, and 1= change. 

 

This formula represents the if-then R command used to create four new raster series 

based on inputted ȹNBR values, the averaged mean ȹNBR values and averaged standard 

deviation ȹNBR values. Multiple iterations were conducted to identify which threshold is 

most useful for identifying seismic lines (e.g., the threshold that results in highest 

detection accuracy). 
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4.2.5 Post-processing. 

The raster series representing annual changes using four thresholds were imported from R 

to ArcGIS as TIFF files. For further analysis, these files needed to be converted from 

floating data, which is the default, to integer. As this project is interested in land-based 

changes, a mask representing waterbodies was applied to each ȹNBR layer using 

ArcGIS. Areas where waterbodies occurred were replaced with NoData values. The 

application of a waterbody mask was required to ensure that any changes detected over 

waterbodies did not influence the results as the focus of this project is on seismic lines. 

Detected changes in raster file format were reclassified prior to vectorization. Areas of no 

change (0) were reclassified as NoData, and areas of change (1) remained the same. This 

step was necessary to properly produce change objects, once completed raster change 

areas were converted to vector polygon objects. Polygons were not simplified; thus, the 

boundary of a polygon in vector file format matches the perimeter of a change area in 

raster file format. This method was selected for consistency with the C2C protocol, which 

does not simplify change objects, as confirmed by a comparison of annual raster change 

layers and the C2C objects derived thereof. 

Once the change objects were produced, an additional column was added to the attribute 

table for each vector file to represent area. The Calculate Geometry tool was used in 

ArcGIS to determine the area of each polygon in square metres. The C2C protocol 

employs a minimum mapping unit (MMU) of half a hectare, as each raster pixel 

represented an area of nine-hundred square metres this mapping includes only change 
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objects derived from raster pixel clusters representing change greater than five pixels. For 

this project a MMU of a quarter hectare and a half hectare, representing raster pixel 

clusters of change areas greater than two and five pixels respectively, were both used. 

The Select Attributes tool was used to select polygons greater than these thresholds and 

these data were subsequently extracted to new vector layers containing only polygons 

larger than the specified area. 

A total of three-hundred and twenty-four annual vector format files were produced. Four 

thresholds were used for detection using breakpoint analysis (ɛȹNBR + 0.5ůȹNBR; ɛȹNBR + 

1.0ůȹNBR; ɛȹNBR + 1.5ůȹNBR; ɛȹNBR + 2.0ůȹNBR). Three area thresholds were used for 

inclusion of polygons (no MMU; 0.25 ha MMU, 0.5 ha MMU). Each series contained 

twenty-seven vector format files representing annual change events for all years inclusive 

of 1985 and 2011. A visual analysis of each vector file series was performed to assess 

object quality for subsequent analysis. The vector series representing annual changes 

detected using the ɛȹNBR + 1.0ůȹNBR threshold and 0.25 hectare MMU were selected. 

 

4.2.6 Contextualization of seismic lines. 

Fire, road, harvest, and seismic line characteristics were assessed to evaluate the ability of 

a new seismic line feature class to be included in classification alongside current change 

classes. Annual raster layers for Landsat TM and ETM+ spectral band 4 and band 7, and 

the created NBR and ȹNBR raster series, were converted to vector point data using 

ArcGIS. Each pixel in these raster files was converted to a point, and each of these points 

had the same spectral, NBR, or ȹNBR value as the original raster pixel. Spatial join in 
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ArcGIS was used to combine vector point data with the change objects in the selected 

series (ɛȹNBR + 1.0ůȹNBR). The attributes associated with the point data, the join features, 

were added to the attributes of the change objects, the target objects. As change objects 

represent multiple pixels, and thus multiple points, several methods were used to combine 

or apply point data to change object polygons including mean, maximum and minimum. 

New attribute categories were added to the vector file, and every change object was 

assigned new values to these categories. Mean was used to assign each object the mean 

value of all points, representing pixel values, occurring within a polygon. Maximum and 

minimum were used to assign each object the value of the greatest and least point value, 

and from this the range of values occurring within an object could be calculated. The 

Calculate Geometry tool was used to determine the perimeter and area for all objects. 

These geometrical metrics were used to then calculate the perimeter-area ratio, which is a 

shape index. Each of these new spectral, geometrical, and descriptive trend analysis 

metrics was added to the attribute table. 

The geometrical, spectral, and descriptive trend analysis characteristics of change objects 

representing seismic lines were compared to those of the other change types (fire, road, 

harvest) to identify distinguishing features. Multiple rules were created and trials were 

conducted using different combinations of metrics and different thresholds to assess 

separability of seismic lines from other features. This was completed using the Select By 

Attribute tool in ArcGIS. 
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4.2.7 Detection and classification accuracy assessments. 

The process described earlier in ñ4.2.2 Assessment of C2C protocol performance and 

seismic line detectionò was used to assess the detection accuracy of the selected vector 

file format series (ɛȹNBR + 1.0ůȹNBR and MMU of 0.25 ha) and the ability for seismic 

lines to be recognized from other change types. A first table was produced summarizing 

the detection accuracy per change type in the correct change year, or in the preceding or 

subsequent change years, and any difference in detection accuracy between the selected 

vector series and the C2C protocol. A second table summarizing the metrics used to 

distinguish seismic line features from other change types was also produced. 
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5 RESULTS 

Results are presented with reference to the three hypotheses related to the changes of 

interest in this thesis and detection and classification accuracies. First, results of the 

systematic evaluation required to confirm that detection and classification accuracies of 

road, fire, and harvest features obtained by the C2C protocol in the study area are 

consistent with the results from previous studies are summarized. Next, detection 

accuracy results for seismic lines following the application of alternate thresholds based 

on mean and standard deviation ȹNBR values are presented. Finally, theoretical 

classification results based on limited metrics, relative to those used to assist with 

classification by the C2C protocol, are provided to describe separability of seismic line 

features from other change type features. 

 

5.1 Hypothesis 1: consistent detection and classification accuracy for fire, 

harvest, and road.  

Accuracy of detection for fire, road, and harvest change types were verified in the correct 

year in which they occurred and in the following or preceding years. Thirty-seven fires, 

seventy road segments, and a limited sample of twelve harvest areas were evaluated to 

determine the detection accuracies of C2C change objects in the study area. Table 3 

summarizes the detection accuracy per change type from this project and identifies the 

difference between these results and those obtained by Hermosilla et al (2016). 
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Table 3. C2C detection accuracy. Detection accuracy of C2C change objects for fire, road, and harvest 

obtained in this project and detection differences with those obtained by Hermosilla et al (2016). 

Change 

type 

  

  Detection rates     

  Correct year ± one year Total 

Hermosilla 

et al 2016 Difference 

Fire  0.622 0.243 0.865 0.959 -0.0938 

Road  0.745 0.018 0.763 0.663 0.1000 

Harvest   0.833 0.000 0.833 0.962 -0.1290 

  

Fire features were detected in the correct year with 62.2% accuracy, and in either the 

following or preceding year with 24.3% accuracy. C2C change objects representing fire 

change events were detected with 86.5% accuracy. The most recent study concerning the 

performance of the C2C protocol by Hermosilla et al (2016) reported an accuracy of 

95.9% for fires in Saskatchewan, there is thus a difference of 9.4% between this project 

and Hermosilla et al (2016). New road features were detected in the correct year with 

74.5% accuracy, and in either the following or preceding with 1.8% accuracy. Total 

detection accuracy of new road features by C2C change objects was 76.3%. There is a 

difference of 10.0% between the road detection accuracy of 66.3% reported by 

Hermosilla et al (2016) and the detection accuracy obtained in this project. Harvest 

features were detected with 83.33% in the correct year, as none were found in the 

preceding or following years the total detection accuracy was 83.33%. Hermosilla et al 

(2016) obtained a detection accuracy of 96.2%, thus there was a difference of 12.9%.  

Classification accuracy of C2C change objects for fire, road, and harvest change types 

were assessed using the collected reference data. A confusion matrix summarizing 

classification results is shown in Table 4.  
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Table 4. C2C classification accuracy. Confusion matrix for fire, road, and harvest change types.  

      Reference 

  Class   Fire Road Harvest Unclassified Totals 

User's 

accuracy 

Commission 

error  

  
 C

 2
C

 

Fire  35 0 0 0 35 1.000 0.000 

Road  0 11 0 1 12 0.917 0.083 

Harvest  0 8 33 9 50 0.660 0.340 

Unclassified1 13 35 16 29 93 0.312 0.688 

Totals  48 54 49 39     

 

Producer's 

accuracy 0.729 0.204 0.673 0.744   

  Omission error 0.271 0.796 0.327 0.256     

1 Unclassified objects are included here as a change class as C2C FID numbers were randomly selected, 

rather than reference FID numbers, to assess classification. Unclassified objects would include resource 

extraction and exploration change types, as well as fire, road and harvest objects that could not confidently 

be classified, and other change types. 

 

Userôs accuracy for fire was the greatest (100%), followed by road (91.7%) and harvest 

(66.0%). Fire also had the greatest producerôs accuracy (72.9%), followed by harvest 

(67.3%) and road (20.4%). Userôs accuracy and its complement commission error 

describe the proportion of C2C change objects committed to a particular change class that 

is actually that change type in the reference data; whereas producerôs accuracy and 

omission error describe the proportion of reference data per change type that has been 

attributed to the correct class (Olofsson et al 2013). In other words, producerôs accuracy 

describes how accurately C2C change objects are classified and userôs accuracy describes 

how well a class of C2C change objects represents the change type in the reference data. 

For instance, reference data (columns) includes fifty-four roads. Of these fifty-four roads, 

eleven were correctly classified as road. Thus, road in the reference data was classified as 
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road in the C2C change objects with 20.4% accuracy. Classification data (rows) includes 

twelve C2C change objects that have been classified as road. Of these twelve road 

objects, eleven are actually roads in the reference data. Therefore, the C2C change class 

for road has an accuracy of 91.7%. Table 5 compares the classification accuracies from 

this project with those obtained by Hermosilla et al (2016). 

 

Table 5. Classification comparison. Differences in classification accuracy results types obtained in this 

project and those obtained by Hermosilla et al (2016). 

Class 

Userôs 

accuracy 

from this 

project 

Userôs 

accuracy from 

Hermosilla et 

al 2016 Difference 

Userôs 

accuracy from 

this project 

Producerôs accuracy 

from Hermosilla et  

al 2016 Difference 

Fire 1.00 0.980 0.020 0.729 0.930 -0.201 

Road 0.579 0.750 0.167 0.204 0.360 -0.156 

Harvest 0.660 0.880 -0.220 0.673 0.880 -0.207 

 

The classification accuracy difference was the least for fire, 2.0% and 20.1% for userôs 

accuracy and producerôs accuracy respectively. The classification accuracy difference for 

roads was 16.7% and 15.6% for userôs accuracy and producerôs accuracy respectively. 

The greatest classification accuracy difference was with harvests, 22.0% and 20.7% for 

userôs accuracy and producerôs accuracy respectively. 

 

5.2 Hypothesis 2: an alternate threshold can be used to detect seismic in LTS 

imagery. 

The primary interest of this project was to demonstrate that seismic lines can be detected 

from LTS imagery. This was motivated by the lower detection accuracy of seismic lines 
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by the C2C protocol; for example, 13.6% from a random sample of 59 seismic lines that 

are visible in the BAP composites, but the prevalence of this type of change type within 

the study area. The low detection of seismic lines by the C2C protocol suggests that the 

threshold used for detection by this protocol is not sufficient to capture this change type. 

One interpretation is that an alternate threshold, designed to be sensitive to the more 

subtle changes known to occur in an area but which are not the principal target of the 

C2C protocol approach, would result in higher detection accuracy. 

Both the C2C protocol and the methods used in this project rely on ȹNBR values to 

detect changes in a pixelôs trajectory over time. A visual assessment of the annual NBR 

and ȹNBR layers produced as part of this project confirms that a diversity of seismic line 

types can be detected. While it has been suggested that higher resolution data are better 

suited to detect seismic lines as they provide greater spatial detail (He et al 2009), some 

studies have shown that a visual interpretation of LTS imagery, while time intensive, can 

yield accurate seismic line detection and classification (e.g., Komers and Stanojevic 

2013; Chen et al 2014). Thus, it was expected that seismic line features could be detected 

in the NBR and ȹNBR layers derived from LTS imagery following a visual analysis. 

That seismic lines can be discerned in these layers indicates that an appropriate threshold 

for detection will allow these features to be captured in the change data. Two examples of 

the types of seismic lines that occur in the study area are shown in Figure 4. 
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a)

 

b)

c)

 

d)

Figure 4. Seismic lines in NBR and ȹNBR raster layers. Images show two types of seismic lines occurring in 1990 

and 2000; a) NBR 1990 b) ȹNBR 1990, c) NBR 2000, and d) ȹNBR 2000. 

 

As Figure 4 suggests, there is significant intra class variation with seismic lines. They vary in 

length and width, occur in varying densities and may co-occur with other types of change 

features related to resource extraction activities (e.g., wellsites), surfaces may be herbaceous or 

the substrate may be exposed, and the degree to which new seismic lines represent a difference 

from pre-change conditions varies (e.g., seismic line through a forest versus a harvested area). 

These latter two sources of variation can be seen in Figure 5, which illustrates year-to-year 
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changes in the trajectory of four randomly selected pixels within seismic lines occurring in 1990 

and in 2000. 

 

a)

 

b)

c)

 

d)

 

Figure 5. Seismic line pixel trajectories. Two pixels were randomly selected from a seismic line in 1990 and another 

two were randomly selected from a seismic line in 2000, graphs show the variation in a pixelôs trajectory and the 

breakpoints representing the new seismic lines in these years; a) pixel from seismic line new in 1990, b) pixel from 

seismic line new in 1990, c) pixel from seismic line new in 2000, and d) pixel from seismic line new in 2000. 

 

Four experimental thresholds (ɛȹNBR + 0.5ůȹNBR; ɛȹNBR + 1.0ůȹNBR; ɛȹNBR + 1.5ůȹNBR; ɛȹNBR + 

2.0ůȹNBR) for change detection were used in an effort to capture the seismic lines that can be seen 

in the annual NBR and ȹNBR layers. The application of these thresholds resulted in four series 

of change objects, one series for each threshold. A visual assessment of these series was 



 

47 | P a g e 
 

performed to identify the series that included the greatest number of seismic line features and the 

least amount of noise. A lower threshold should detect more change features, whereas a higher 

threshold would omit these features. Figure 6 illustrates the change objects and noise detected 

using the four experimental thresholds. 

a)

  

b)

 c)

 

d)
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e)

 

f)

g)

 

h)

Figure 6. Detected seismic lines. Comparison of detected seismic lines from 1990 and 2000 using four experimental 

thresholds based on mean and standard deviation values; a) 1990 using threshold of ɛȹNBR + 0.5ůȹNBR, b) 1990 

using threshold of ɛȹNBR + 1.0ůȹNBR, c) 1990 using threshold of ɛȹNBR + 1.5ůȹNBR, d) 1990 using threshold 

of ɛȹNBR + 2.0ůȹNBR, e) 2000 using threshold of ɛȹNBR + 0.5ůȹNBR, f) 2000 using threshold of ɛȹNBR + 

1.0ůȹNBR, g) 2000 using threshold of ɛȹNBR + 1.5ůȹNBR, and h) 2000 using threshold of ɛȹNBR + 2.0ůȹNBR. 

 

This assessment confirmed that a lower threshold based on mean and standard deviation ȹNBR 

values for detection captures more change features, and a higher threshold captures less change 

features. Noise showed a similar pattern, but in reverse with more noise at lower thresholds and 

less noise at higher thresholds. While information was not provided to enable the identification 
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of those pixels that were assigned an artificial value, anomalies can be detected in a visual 

assessment of BAP composites or any layers derived from BAP composites. Figure 7 illustrates 

one of these anomalous areas where it is likely that a larger quantity of synthetic pixel values 

was required and generated a larger quantity of noise that can be seen in the series produced 

using the ɛȹNBR + 1.0ůȹNBR threshold. 

 

a)

 

b)

 

Figure 7. Anomalous areas and noise. Comparison of ȹNBR layer and detected changes from 1990 shows presence 

of noise focused in anomalous area likely to be where high amounts of synthetic pixel values were required (e.g., 

due to cloud cover); a) 1990 ȹNBR, and b) 1990 detected changes. 

 

The change object series generated using a threshold of ɛȹNBR + 1.0ůȹNBR was selected for 

further analysis. While higher thresholds include less noise, this series included many seismic 

lines, the feature of interest in this project, which were not captured by higher thresholds. Figure 

8 illustrates the captured seismic line features from the selected series in comparison to the C2C 

change objects, using the same examples from 1990 and 2000. 
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a)

 

b)

 

 

c)

 

d)

 

Figure 8. Detection by C2C protocol and by this project. A comparison of objects detected using the selected series 

in this project and by the C2C protocol; a) 1990 ɛȹNBR + 1.0ůȹNBR objects, b) 1990 C2C change objects, c) 2000 

ɛȹNBR + 1.0ůȹNBR objects, and d) 2000 C2C change objects. 

 

An assessment of the detection accuracy of randomly selected seismic line features stratified by 

year yielded an accuracy of 39.0%, this represents an increase of 25.4% over the detection 

accuracy of 13.6% obtained by the C2C protocol objects. A summary of detection accuracy 
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achieved by this experimental threshold, and the differences between the detection accuracy 

obtained by this method and that of the C2C protocol is provided in Table 6. 

 

Table 6. Detection accuracies of C2C objects and objects created in this project. 

Class   C2C object ɛ + ů object  

  detection rate detection rate  

    Correct year ± one year Total Correct year ± one year Total Difference 

Seismic lines   0.136 0.000 0.136 0.390 0.000 0.390 0.254 

         
Fire  0.622 0.243 0.865 0.860 0.060 0.920 0.055 

         
Harvest  0.833 0.000 0.833 0.833 0.000 0.833 0.000 

         
All road types  0.745 0.018 0.763 0.849 0.041 0.890 0.127 

         
Paved  1.000 0.000 1.000 1.000 0.000 1.000 0.000 

Gravel  0.963 0.000 0.963 0.741 0.074 0.815 -0.148 

Substrate  0.545 0.036 0.582 0.909 0.036 0.945 0.364 

Herbaceous   0.473 0.036 0.509 0.745 0.055 0.800 0.291 

 

Table 6 also shows that detection accuracy improved for certain other change types. Harvest 

detection was unchanged from that obtained by the C2C objects. Fire detection accuracy was 

92.0%, an improvement of 5.5%. Overall detection accuracy for roads improved by 12.7% to 

89.0%. Roads were also separated and assessed by surface type; paved roads had the same 

accuracy, gravel road detection accuracy decreased by 14.8% to 81.5%, detection of roads with 

exposed substrate improved by 36.4% to 94.5%, and herbaceous road detection improved by 

29.1% to 80.0%.  

 

 

 


