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ABSTRACT.

Thenationally implemente@omposite to chang€2C)protocol isintended to detect

and classify dominant larggcalestand replacinghange typeée.g., fire, road, harvest)

that are of national relevand@ther changes, such as regionally important change types

or finer change features, may not be captured by thisadetn the Alberta Oil Sands
Region(AOSR), changes from resource exploration and extraction activities dominate

the landscape and are the primary driver of boreal forest change in this area. This project
is interested with the detection and classificatd seismic linesrom Landsat time

series (LTS) datarhese featuragpresenbne of the most abundant change typas

occur at very high densities, have proliferated across the landscape in recent, dechdes
can havesevereecological impacts (e.gmpactto federally protected boreal caribou

population).

Whereas th€2C protocol has been found to yield high detection and classification
accuracies for fire, road, and harvest change types, seismic lines haeemaiccurately

detectednor are tky included in classification. This projestll confirm that detection
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and classification accuracies of fire, road, and harvest objects generatedC2{the
protocolareconsistent with previous studies. However, it will demonstrate that an
alternate threshold for detection will yield higher detection accuracy for seismic lines
relative to those o£2C protocol objects. Furthermore, it will show that these features
have dstinguishing geometrical, spectral, and descriptive trend analysis characteristics
that will enable this new change type to be included in classificattanability of an
alternate threshold to detect seismic lines unequivocally demonstrates thatehs an
opportunity to enhance tl&2C protocol. Therefore, it is recommended that an enhanced

C2Cprotocol prioritize the inclusion of seismic lines in future iterations.
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1 INTRODUCTION.

Remotely sensed data can be used to support goals associated with change detection and
classification, environmental or ecological monitoring, natural resource management,
guide carbon budgeting policies (Blascta(40; Banskota et al 2014), among other
applications. This project is interested in the ability of remotely sensed LTS data to be
used to detect and classify seismic lines. Seismic lines are linear features that vary in
width (e.g., one to eight metres)daare associated with the exploratory phase of resource
extraction activities. Resource extraction activities represent an important contributor to
boreal forest change (Audet et al 2015). It is important to detect and classify seismic lines
high accuracys these features have proliferated in recent decades with the development
of the resource extraction sector in the AOSR, can occur at high densities, persist over
many years, and have ecological impacts (Chen et al 2014nRij@b2016; van Rensen

et d 2015).

Seismic lines are an important type of change. From an ecological perspective, a change
is an alteration to ecosystem properties over time and any feedback loops that may be
entrained (Kennedy et al 2014). This definition is contrasted to theteesansing

understanding of a change, which is some measurable difference between two or more
images (Kennedy et al 2014). For instance, a comparison of two images taken at different
times allows for changes to be detected, and the inclusion of everatarean provide
additional insight, such as persistence and rate of change (White et al 2011). In this
project, a change is detected using the normalized burn ration (NBR) vegetation index
and is understood as t he nthrgughtime, whick e g me nt

represents a loss of vegetation.
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While seismic lines may be captured by data with a finer spatial or temporal resolution,
LTS imagery is appealing for several reasons. It is available across Canada and offers a
long record spanning mamlecades (White and Wuld2013). Therefore, LTS data can
support largescale and longerm change detection, classification and monitoring efforts.
Furthermore, this is the data source already being used in the nationally implemented

C2C protocol(Hermosila et al 2015a)As the ultimate objective of this project is to

make recommendations for an enhanced C2C protocol, the methods and data used herein

reflect an attempt to deviate minimally from those of the C2C protocol.

The C2C protocol employsdetection threshold that will capture features of interest
(fire, road, harvest), while being sufficiently robust as to minimize noise. Noise refers to
detected objects that do not represent any actual change on the ground. However, this

threshold yield low detection accuracy for seismic lines.
It is hypothesized that

0) the detection and classification accuracy of C2C objects for fire, road and
harveswithin the selected study area in the AOBIR be consistent with
previous studies,

(i) seismic lines cabe detected from LTS imagery using an alternate threshold
for detectiorwith higher accuracy relative to the C2C protoewid

(i)  these features can subsequeh#yincluded in classificatioas they have

distinguishing characteristics that can be descrilyeldTS data

Generallyseismic linesare finer, both in terms @patial extenand spectral difference

from prechange conditions, relative to the change types intended for capture by the C2C
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protocol(fire, road, harvest)To demonstrate that seisminds can be detected from LTS
imagery with higher accuracy thachievedoy the C2C protocol, objects representing
annual change features will be created using experimental thresholds. These objects will
be assessed using reference data randomly selectedtbre identification (FID)

numbers to determine accuracy, and compared to the accuracy of C2C élijiectsgyh

the C2C protocol is designed for national implementation and is concerned with
dominant change types at this scale, certain regionally ientarhange types and finer
change features that have a significant cumulative impact (e.g., seismic lines) are worthy

of inclusion.

The remainder of this paper will proceed as followsstHt will provide a description of

the data inputs, including t&2C products and reference data. This is followed by a
summary of the methods used in the C2C protocol to detect and classify changes, and
those used in this project. The subsequent results are presented with reference to this
project 6s t hhe peaultiimatepsectioh iatergets.the fesults, again with
reference to the hypotheses, before identifying challenges encountered in this project and
providing suggestions for a refinement of methods to overcome these challenges,
highlighting the relevancef the results from both a remote sensing and ecological
perspective, and finishing with several suggestions for future research. The concluding
section returns to the underlying objective of this project, which is to demonstrate that

seismic line featuresan and should be included in future iterations of the C2C protocol.
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2 STUDY AREA.

A study area in the AOSR of approximately 5,000 square kilometres was selected to
assess the performance (i.e. detection and classification accuracy) of the C2C protocol
and of a novel threshold for change detection introduced in this project. The study area
encompasses the small village of Conklin, Alberta, (population 211, per 2011 census) and
is located approximately 150 kilometres from Fort McMurtag, majorpopulation hub

within anarea ofexploration and recemxtraction activities. Figurg provides a visual
depiction of the study area with reference to provincial boundaries, selected cities, the
extent of oil deposits in the AOSR, and the extent of tmedddorest area. A great

guantity and variety of both natural and anthropogenic change events have occurred in
the study area between 1984 and 2012, and it remains a dynamic region with angoing

significant future or expectathangesn the coming deakes

High Level

Edmbnten

British
Columbia

AL : 5\

Figure 1. Map of study areeDark grey area represents extent of the ACG&SHJight grey area represents
the extent of the boreal forgstdapted from Audet et aD15, p 365)
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Ecologically, the study site is in the Central Mixedwood Nat8tdiregion of the

Albertan boreal forest, the largest natural subregion in Alberta. This subregion is
characterized by undulating plains and dominated by asjmgulus tremuloidgsand

white spruceRicea glaucatree species, with jack pinBiQus banksiaa) stands in some
areas (Natural Regions Subcommit®®86). Several lakes, the largest being Winefred

Lake, and other waterbodies are included within the study area. Cretaceous shales make
up most of the subregi ons ds ubcamhite2006)i ng bed
and it is within the Lower Cretaceous McMurray Formation that etuma present

(Gillanders et aR008). Surficial geology is mixed and variable across the Central
Mixedwood Natural Subregion, most soils are either luvisols or brunlsai®ther soil

classes are also preseng{iral Regions Subcommitt@806). The mean annual

temperature of this subregion is @2 with means of 15.€ and-18.7 C for its warmest

and coldest months respectiveNafural Regions Subcommitt@806). Theclimate is

considered to be subhumid asubarctic (Audet et &015).

Economically, the study area is within th©@&Rwhich contains an estimated 1.6 trillion
barrels of oil (Audetet al2015) in deposits covering approximately 140,200 square
kilometres (Gillandergt al2008). Bitumen extraction began in the AOSR in 1967, and
expanded significantly between 1978 and 2003 (Aatlat2015). The selected study

area is well suited for a sty concerned with the detection and classification of seismic
lines as these features, and other changes related to resource extraction activities, are
abundant. Three leaseBevon Pike, Devon Jackfish and Nexen Leispee located

within the selectedtudy area, suggesting that additional change events will result from
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future exploration and bitumen extraction activities. Although the study area used in this
project represents a small portion of the AOSR, the results are significant to other areas

of Albertawith similar human footprint disturbances and infrastructure.
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3 DATA USED.

In this project, the detection and classification accuracy of products produced by the
Composite2Change (C2C) protocol were assessed using reference data. Reference data
werealso used to assess a novel change detection method introduced in this project, and
for training and validation purposes. This section provides an overview of the data used

in this project.

3.1Landsat, BAP composites and C2C products.

The Composite2Chand€2C) protocol has been used to detect and classify national

level Canadian landscape changes using the historical archive of LTS imagery and a
change feature hierarclidermosilla et al 2015aBest available pixel (BAP) composites

and C2C products for ¢hprovince of Alberta between 1984 and 2012 were made
available for this project by the Canadian Forest Services, a sector within the department
of Natural Resources Canada. Spatially, only data occurring within the selected study

area were considered aneimporally, all years were included in this study.

While the Landsat series of satellites has been continuously collecting data since the
launch of its first satellite in 1972, the Thematic Mapper (TM) and Enhanced Thematic
Mapper Plus (ETM+) sensors wedaeinched with Landsat in 1982 and Landsatin

1999 respectively (Wuldeat al2012).LTS temporal and spatial resolutions are well

suited to large area land cover mapping, change detection and monitoring (e.g., Banskota
et al 2014Gomezet al 2011; Fanklin et al 2015)Landsat data have a spatial resolution

of 30 metres with a 185 kilometre wide swath, a temporal resolution equal to the

12| Page



satellitebs maximum revisit peri ofd70xf 16

185 kilometres (White and/ulder2013). Landsat TM and ETM+ both include one
thermal band and six spectral bands corresponding to different portions of the
electromagnetic spectrum, Landsat ETM+ also itketua panchromatic band (White and
Wulder2013). A summary of Landsat TM and' B+ specificatios is provided in Table

1.

Table 1. Specifications of Landsat satellite sensors (adapted from White and Wulder 2013, p 21).

Sensor Band Name Range (&m)
™ 1 Blue 0.457 0.52

™ 2 Green 0.5271 0.60

™ 3 Red 0.63i 0.69

™ 4 Nearinfrared 0.767 0.90

™ 5 Shortwave infrared | 1.5571 1.75

™ 6 Thermal 10.40i 12.50

™ 7 Shortwave infrared Il 2.087 2.35

TM and ETM+ 8 Panchromatic 0.527 0.90

The spectral bands of Landsat TM and ETM+ (bands 1 to 5 and 7) were provided
separately in raster file format for all years inclusive of 1984 and 2012. TAnemyiles

per band were provided, for a total of 174 files. Annual-beatlable pixel (BAP)
composites, generated using bands 1, 2 and 3 were also provided in raster format, for a
total of total of twentynine BAP composite raster fileSelect @scriptive metrics

produced by the C2C protocol to characterize a detected change event were also
provided. One raster file was provided for each of the thirteen descriptive metrics. A
summary of descriptive metrics provided in Tabl@ in a later section (Methodology,

C2C Protocol).
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Change objects were provided in vector file format, with one file prataceually for

all changes inclusive of 1985 and 2011, totalling twesgtyen vector format files. For
instancethechange objectsf any yearepresent features thia&d not been present in the

LTS imageryfrom the preceding yeam other words, annual change layers represent
changes from one year to the next, rather than the cumulative changes detected up until
that point.The attribute table for each layer provides supplementary information for each
change object including areand relative distribution of the number of votes attributed to
each change class by the random forest classifier. Classification confidence is high when
the ratio between the top two classes is less than 0.4, and objects are committed to the
change typelass that received the greatest number of votes. While objects with low
confidence attributes are Aunclassifiedo,
candidate class. All change objects represent change events that affected an area greater

than 05 hectares, the minimum mapping unit (Hermostlal2016).

3.2Reference data.

Multiple reference datasets were collected to assist with a preliminary assessment of the
C2C protocol s performance, and | atoer to a
sample set. First, where changes are detected, objects are produced by the C2C protocol

and subsequently attributed to change type, including fire, road, harvest;standn

replacing change feature classes (Hermostla2015a; Hermosill@t al2015b).

Reference data for fire, road and harvest were required to ensure that C2C detection and
classification accuracies within the selected study area were consistent with previous

C2C protocol applications in British Columbia, northern Saskatchewathardearst
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Forest Management Area in northern Ontario (Frargdial2015; Hermosillzet al

2015a; Jarroet al2016). Second, reference data were required to assess the detection
accuracy of new series of change objects that were generated followaggptioaition of

a novel threshold for change detection. Reference data were then used to train a random
forest classification algorithm and validate the classification accuracy of the new series of

change objects.

Reference data were acquired from orgaiornsa through their own online portaks.g.,
Alberta Biodiversity Monitoring InstitutéABMI)), and from provincial and national
agencies via open data portasy;,GeoDiscover Alberta). Reference data collected
through survey methods or aerial imagengrpretation was favoured. Suitable data
overlapped spatially with the selected study area and temporally with the annual BAP

composites and C2C products provided.

3.2.1 Fire.

Spatial fire data were acquired directly from Alberta Wildfire, the wildfire brarfiche
Alberta Ministry of Agriculture and Forestry, via their online data portal. Wildfire data
are in vector format, objects represent discrete wildfire events occurring in Alberta
between 1931 and 2015. Object accuracy and precision is a functienasfgimal

method of data collection and subsequent data tramsterdlder hanedrawn wildfire
perimeters were later digitized). Additional categorical information available for each
object in the attribute table includes wildfire class based onlaweajntensity, fire year,

data capture year, and fire perimeter data source.
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3.2.2 Harvest.

Harvest data that overlapped spatially and temporally with the selected studieezea

not available through the Alberta Vegetation Inventory (AVI), produced bxltherta
Ministry of Agriculture and Forestry. While harvested areas occur within the study area,
these sites did not meet any of the three minimum size criteria for inclusitie

Alberta Ministry of Agriculture and Forestriforest harvest data were aable in vector

file format in the 3x7 kilometre Human Footprint (HF37) dataset, produced by Alberta
Biodiversity Monitoring Institute (ABMI). This dataset includes a series of rectangular
sampling plots wherein all human footprint elements are delinéat#gmoset al2015).
Human footprint features include all instances where the removal of natural land cover
types for industrial, recreational, or residential purposes occurred over an extended
period. Among the attributes included in the HF37 datasetwrblocks, which are areas
where industrial tree harvests have occurred. This dataset is produced using a
combination of available aerial imagery, SPOT6 satellite imagery, IRS satellite imagery,
and other data sources (Solyned®l2015). The HFI37 daset is coincident with later
portions of the IS used in this project; it is available for 1999, 2001, and annually

between 2004 and 2012.

3.2.3 Road.

Two complementary road datasets were acquired for this project: the National Road

Network (NRN) produced byhe Ministry of Natural Resources Canada; and the Human
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Footprint Inventory (HFI) produced by ABMI. Interpretation of SPOT6 satellite imagery
was used to produce the HFI, and the NRN is created using GPS, surveying, and imagery
interpretation from multiplsources. Descriptive information is provided in both datasets,
however the characterization of roads differs between the two. For instance, the HFI
dataset includes vegetated or hard as surface types, whereas NRN data includes paved or
unpaved. Thus, a gral road is attributed to the hard surface class in the HFI dataset, and
the unpaved class in the NRN dataset. The NRN dataset has been updated on an annual
basis since 1979 and includes a large amount of descriptive information as it is intended
to satisy various information needs. The HFI dataset includes more road iyglesling

some roadsn private property (i.e. recreational trails and resource roads), and the
inclusion of a greater diversity of road types represents a greater road areal eetent. Th
HFI dataset is only coincident with later portions of ti& used in this project (2007,

2010, 2012). While roads from ABMI dataseemore detailed due tilmeinclusion of

more road types, the revisit period of the NRN dataset is superior. Therefordabasets

were included in this project and used in conjunction to obtain the best information.

3.2.4 Seismic lines.

As with much of the reference data, seismic line data were available for latter portion of
the LTS used in this project. The HF37 dataset described earlier includes seismic and is
available for 1999, 2001, and annually between 2004 and 2012. A complementary
seismic line dataset produced by ABMI and acquired through the Boreal Ecosystem
Recovery and Asssment (BERA) research project was also used. The BERA dataset

includes all seismic lines occurring within the study area, and is not limited to those

17| Page



within sample plots. The BERA dataseétadata indicates thigtan aggregated version

of other availatd ABMI datasetsDisplaying the dataset and its attribute table shows that

it has been reduced to contain only seismic lines, and expanded to include the full spatial
extent of the study area. Seismic line data are available for 1998, 2001, 2004, 2806, 200

2009 and 2011 in this dataset.

3.2.5 Waterbodies.

Waterbody reference data were extracted from the ABMI producedt@valbll Land

Cover (W2WLC) dataset, and used to produce a mask to exclude waterbodies from

analysis as the interest of this project arengeaevents occurring on land. The W2WLC

dataset was produced in 2000 and in 2010. The 2000 W2WLC dataset was derived from

t wo other raster products (Canadian Forest
Development land cover classification, and Agliure and AgsFood Canadads La
Cover for Agricultural Regions of Canada classification) which were produced using
LTSimagery. Thus, any errors in these initial raster products are incorporated in this
secondary product. The 2010 W2WLC dataset wadymed directly from LS imagery.

While significant changes to some landcover type classes occurred between 2000 and

2010, waterbody polygons for both years are nearly identical (0.01 % change in areal
distribution per Castill@t al2014). Waterbody polyges from the 2010 W2WLC dataset

were selected for inclusion in this projééthile changes associated wigphemeral

wetland have been found to be significant in other areaps,Ahmed et al 207 found

that wetlands accounted for 12% of change in the Hearst Forest Management Area), these

types of changes are not the focus of this project.
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4 METHODOLOGY.

In this project, the performance of the C2C protocol was assessed by determining the
resulting etection and classification accuracies of this method. This was intended to
confirm that the accuracidsr certain types of changesthin the selected study area are
consistent with the results presented in previous studies, and to demonstrate that certa
humanfootprint development and infrastructure features that experience consistently
lower accuracies. Seismic lines are among those features, yet within the selected study
area and the AOSR more broadly these features are an important element of fores
change. The main objective of this study was to develop a methodology to improve
detection of seismic line features that occur between 1984 and 2012, and include them in
the broader C2C disturbance change classification hierdtédeyecognized thahe

C2C protocol was designed to capture lasgale change associated with carbokget
analysis on a national scale. However, the finer scale fedtunesh more subtle

typically only regionallyimportanta nd o f t e i« erpd td ac si$gafnterest

for refinement and improvement of the use of the protddwrefore, lhe following

section will first describe the methodology of the C2C protocol, followed by the methods
used in thighesis researgbrojectto consider the smaller, finer, anadra subtle change

features associated with seismic exploration and development

4.1 C2C protocol.

The C2C protocol methodology involves LTS qpm®cessing and compositing, change

detection, change characterization, change classification, and accuracy assessment. These
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stages are summarized in Figlrdave been described in a series of publicatiesws, (
Hermosilla et al 2015a, Hermosilla et al 2015b, and Hermosilla et a),201d&are

briefly summarizedere

. Compositing rules
Preprocessing DOY
Fmask Distance to cloud

LEDAPS Sensor

Opacity
————— Temporal domain — — — — —I §= Spatial domain — |
: - [l| i '
Noise Breakpoint | | | | Contextual I
detection detection | | : Analysis :
| I

Figure 2. C2C workflow from Hermosilla et al 2016, p 5)

Hermosilla et al (2015a) describe the method used to create BAP compaitdglate

LTS data are assessed for inclusion in the protocol based on cloud cover (less than 70%)
and date (August 1 * 30) to correspond with the terrestrial growing season. The Landsat
Ecosystem Disturbance Adaptive Processing System (LEDAPS) algositiyoplied to
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generate atmospherically corrected surface
followed by the Fmask algorithm to remove unwanted atmospheric elements and water
bodies. Once prprocessing is complete, annual bagailable pixel BAP) composites

are creating using a series of compositing rules whereby each pixel observation receives a

score based on

0] sensor,
(i) image acquisition date,
(i)  distance to atmospheric perturbations, and

(iv)  atmospheric opacity

Noise detection and removal techniques assign anomalous pixels a no data value, and an
infilling technique assigns synthetic values to these data gaps and other areas of no data

based on spatial and temporal pixel trends (Hermasilé2015a).

Using these BAP composites, changes are first detected in the temporal domain using a
bottomup breakpoint detection algorithm (Hermos#ékaal2015a). This analysis is

performed over thdlormalizedBurnRat i o ( NBR) and f ol l ows eac!l
trajectory though time to identify spectral trends and breakpoints (Hermesita

2015a) NBR uses bandé and7, the near and shewave infraredespectivelywhich

are the least sensitive to atmospheric and radiometric variability, and is considered an
appropriate vegetation index for general change analysis across forested tagoas (

2014). NBR layers were produced as part of this project to support the implementation of

a novel threshold facthangedetection, additional detaitegardingghe mehods to

produce these layers are provided in a subsequent section.
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Hermosilla et al (2016) define breakpoints
that deviates from its expected range when NBR values are plotted against year. Trends
are describd by Hermosilla et al (2015egfer to one of four distinct pa&tins observed in

all pixels:

) no breakpoints,
(i) multiple breakpoints, no negative slopes,
(i)  one breakpoint, negative slope, and

(iv)  multiple breakpoints, at least one negative slope.

A contextualanalysis is then performed in the spatial domain to ensure that cohesion of
spatially discordant pixels representing the same change event (Hermiosil@15a).

At this stage, change events representing an area less than 0.5 hectares are removed; a
minimum mapping unit of 0.5 hectares is used in support of the information needs by the

Canada National Forest Inventory (Hermosgial2015a).

Hemosilla et al (2016) describe tbet of descriptive metrics generatdtese metrics

characterize

0) negativesegments, representing a change event,
(i) pre-change conditions, and

(i)  postchange conditions.

Pre and posithange metrics include change magnitude, persistence and evolution rate.
Negative segment (change) metrics include change year, persistence, magnitude
variation, and change rate. The change year metric applies to the greatest change, which

ist he negative segment in a pixelds -traject:
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and postthange event NBRalues In other words, the greatest change refers to the
change event with the greatest magnitude of change betweamgrgosichange NBR

values.

Where multiple breakpoints, representing
spectral trajectory first and last change year change persistence metrics are generated to
describe these additional breakpoints (Hermostiilal2016). A €t of spectral metrics
(e.g.,average pixel values, range of pixel values) are generated using NBR and
components of the Tasseled Cap (brightness, greenness and wetness) and selected
spectral bands {8,7) (Hermosillaet al2015b). Geometrical metrics aatso generated

based on the geometry and shape complexity of change events (Heret@sR@l15b).

This series of descriptive trend analysis, spectral and geometrical metrics are summarized
in Table2. These metrics provide information about trends aadised to support

subsequent attribution of change objects to a change type class.

Table 2. C2C metricsSummary of descriptive, spectral and geomatnisetricsproduced by the C2C
protocoland the data sources used to create these mettiapted from Hermosilla et al 2045124 and
Hermosilla et al 2016 7).

Metric type Name Source(s)
Geometrical Area
Perimeter
Compactness
Shape index
Fractal dimension
Trend analysis Average change magnitude variation B4, B5, B7, NBR, TCG TCWZ, TCB?
Prechange magnitudeariation NBR
Prechange duration
Prechange evolution rate NBR
Postchange magnitude variation NBR
Postchange duration
Postchange evolution rate NBR
Greatest bange yeatbreakpoint) NBR
Greatest lsange persistendgduration)
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Greatest kange magnitude variation NBR
Greatest lbange rate NBR
First change yedgbreakpoint) NBR
First change persistenguration)

Last change yedbreakpoint) NBR

Last change persistenfeuration)

Spectral

Average spectral valyare-change
Average spectral value pesthange
Standard deviation value pesftange
Average pixel series value

b4, b5, b7, NBR, TCG, TCW, TCB
b4, b5, b7, NBR, TCG, TCW, TCB
b4, b5, b7TNBR, TCG, TCW, TCB

b4, b5, b7, NBR, TCG, TCW, TCB

b4, b5, b7, NBR, TCG, TCW, TCB
b4, b5, b7, NBR, TCG, TCW, TCB

Standard deviation of pixel series values
Range of pixel series values

1TCG: Tasseled cap greenness

2TCW: Tasseled cap wetness

3TCB: Tasseled cap brightness

Objectbased change classification is performed using a hierarchical random forest
classifier. Objects are attributed to one of four change type classes (fire, road, harvest,
non-stand replacing change) relevant for forest change reporting and monitoriogn
unclassified class (Hermosil& al2016). The random forest classifier also produces a
variable importance measure and confidence indicator for each class. The variable
importance value is useful to identify the predictive ability of varialdes @ significant
decrease in accuracy would result from the removal of variables with high predictive
power) (Hermosillaet al2015b). The confidence indicator, which is the ratio between the
two classes that receive the most votes, identifies objeaitewérenot readily attributed

to a change type class (Hermosélaal2015b). Objects with low confidence attributes
(ratio value higher than 0.4) were attributed to unclassified. The unclassified class
includes objects representing rare change eventshese that could not be committed to
any one change type class with reasonable confidence (Hernetsil2015b). Once
change objects are attributed to a change type class (fire, road, harvestsiacidg

change) the detection and classifica@mcuracies are assessed.
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4.2 Methods of aalysis.

The main interestof thisthesis researgbrojectwas to determine specific change class
detection and classification accuracy, &amdetermine whether a novel threshold could

be implemented to improve detection and classification accuracies for seismic lines over
those obtained using the C2C protocol. This section describes the methodology used to
assess the performance of C2C protdy determining the detection and classification
accuracies of fire, road, and harvest change type classes within the selected study area.
Although not included among those change types of identified by the C2C protocol, the
detection accuracy obtainearfseismic lines is also assessed. This section then describes
the methodology implemented to prepare data for analysis, apply an alternate threshold
and contextual analysis to detect change events in the temporal and spatial domains,
prepare training andalidation samples and perform a classification of change objects,
and finally how results from this analysis were assessed and compared to those obtained
using the C2C protocol. The methodology and workflow used in this project are

described in Figura.
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Figure 3. Methods workflow.Flowchartproviding an overview of methods used in this project.

4.2.1 Reference data prprocessing.

Collected reference data were assessed for inclusion in this project based on their spatial
and temporal extent, revigiequency, and source. Suitable data overlapped spatially

with the selected study area, and temporally with LTS imagery and C2C products.
Reference data were clipped as required using ArcGIS Desktop to ensure that the extent
mirrored that of the selectetlidy area. Where multiple datasets were available those

with higher revisit frequencye(g.,annual data included rather than data collected every
ten years) wereelected preferentialljReference data collected through survey methods

or aerial imagery iterpretation were alsarioritized
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Thisthesis researghrojectwas principallyinterested in change events occurring on land

in a forested environmernhereforewaterbodies were excluded from analysis

simplicity (even though marginal and epheménalrological changes can be expected to
impact forest unit$ such features have been analyzed elsewhere, e.g., Ahmed et al
2017). Waterbody reference data are included in the Méalall Land Cover dataset
produced by ABMI in 2000 and 2010 in vector fitemat. As this dataset contained

multiple landcover class types, all waterbodies attributes were selected and exported to a
separate vector file using ArcGIS Desktop, and subsequently converted to a raster file

format to be used as a mask.

4.2.2 Assessment @2C protocol performance and seismic line detection.

A preliminary assessment of the data was ¢
detection and classification accuracies for fire, road and harvest change type classes

within selected study areathe AOSR were consistent with previous studies. Detection

of seismic line features, while not included as a change type in the C2C protocol, were

also assessed. Assessment of all features was limited to new change events due to a lack

of reference dateegarding changes to existing featurksisual assessment of the BAP
composites suggests that modificatibmexisting change features were present

predominantlyto road change types, occasionally with seismic line and harvest change

types, and absent from fire change types. For instance, a road segment may be detected

both when itwvasnewly constructed and again at some later time when the same road
segmentswidered e.g.,.si ngl e to doubl e | anewasor the ro

changed€.g.,herbaceouto grave). In this example, there would be two changes

27| Page



detected, the first change would represent the new road and the second change would
represent a modificatn to the existing roadrFor the purpose of this analysis, based on an
assessment of the BAP composités, éxclusion of changes to existing features is
acceptable as the relative contribution of these changes in the preliminary assessment is

unlikely to produce significantly differerdetection or classification accuracies

Annual reference data FID numbers for each change type class were randomly selected

using a nofrepeating and nesequential random number generator in R. Reference data

to be includedn the assessment were stratified by year, rather than randomly selecting

FID numbers from the complete time series, in an effort to avoid sampling errors. For

instance, if a disproportionate amount of FID numbers were randomly selected from the

same yearand the BAP composite from that year happened to be significantly better or

worse €.g.,substantially more or less data gaps and proxy values required in

compositing), the results would over undere st i mat e the C2C protoc
Stratifyingsampling by year attempts to address the risk of-@rarnderestimating

detection and classification accuracies obtained by the C2C protocol.

The proportion of reference data used to a
classification accuracy vadebetween change type classes. For instance, there is a

greater amount of new roads relative to fire events that occurred in the selected study

area, thus the relative proportion of fire reference data used was greater than that of

roads. Similarly, the portion of reference data used varied within the same change

type class between years. For instance, when there was a single fire event that occurred
within the study area in a year all data from that year was included in the assessment,

whereas a year @t had multiple discrete fire events would have a lesser proportion of
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reference data used. The proportion of reference data FID numbers included in the
preliminary assessment was a function of the annual number of objects for each change
type class, andeir variability. The stopping criteria for inclusion of supplementary FID
numbers was determined by the greatest number of FID numbers required to produce
consistent results. In other words, no additional FID numbers included in the assessment
when the meginal difference from the addition of one more FID number was not
significant. While more FID numbers could have been included, the results would not

differ significantly.

Reference data, annual C2C change objects, and annual BAP composites were displayed
in tandem in ArcGIS Desktop to facilitate comparison. In instances where reference data
were unavailable on an annual basis, or where date of data capture was not coincident
with date of change event, BAP proxies from other years were used to identifyawhe

change event could first be distinguished. For instance, harvest data were available for
1999, 2001, and annually between 2004 and 2012. A change event represented by harvest
features in the 2004 layer may have occurred in any year between 2001 4n@R268

the year of a change event was determined, the C2C change objects were verified for the
corresponding year. If there was no C2C change oltjattbrresponds tihe change

feature in theeference data, C2C change objects from preceding and iiojjoxars

were verified.

Although the interest of this study is the accuracy of detection, a reasonable precision
threshold is also required to assess detection and classification accuracies. In the temporal
domain, a change event was considered detédtentcurred in the correct year or in the

preceding or following year€hange objects may have been misattributed to another
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year due to the use of proxies where the change event occurred, or when the date of the
change event was after the date usembtiect LTS imagery and produce the BAP
composites (August 1 £ 30 daySjmilarly, in the spatial domain, change events were
considered detected if more than half of the area from the reference data was included in
the C2C change produdt.is expectedhat the perimeters of change features on the
ground will vary from those of the detected objects because of the spatial resolution of
LTS imagery (Komers and Stanojevic 2018)minimum overlap of 50% between

detected change objects and change featurédseaground is consistent with recent

studies comparing reference data to C2C change obgegtslarron et al 2017and
Hermosilla et al (2015a) indicated that change objects are considered reliakde with
minimumspatial and temporal corresponden€®&0% For instance, if a road segment

from the reference data appeared discontinuous along its length, but the majority of its

area was included in the C2C change objects, it was considered detected.

The randomly selected reference data FID numbers &br @@ange type class were
compared to C2C objects and BAP composites. Detection assessment results were
inputted in an Excel spreadsheet. For each of the randomly selected FID numbers the

following supplementary information was included in the spreadsheet:

(1 visibility of change event in BAP composite (yes or no),

(i) if visible, year in which change event is first appear,

(i) coincidence in C2C change objects (yes or no), and

(iv)  towhat year is a C2C change attributed to (year matching reference data

or £ one year)
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Classification assessment results were also inputted in an Excel spreadsheet. When a
change event was captured by the C2C objeatssthen attributed to a change class
type using a hierarchical random forest classifier. For each C2C change objetatige
type class to which it was committed is noted. This spreadsheet allows the question of
whether the classification of a C2C change object corresponds with the change class type
of the reference data to be answered. Additional information thatrnfayni why a

change class type was not detected by the C2C protocol or why it may have been
committed to the wrong change class type was also noted. This would include
information regardingomplexchange events that include multiple change class types
(e.g.,roads within a harvested area), as well as change events that represent a smaller
spectral change from the surrounding mateixy(,new roads in an area that had
experienced a fire the previous year) that may represent a lesser difference than the

detection threshold used by the C2C protocol.

4.2.3 Normalized burn ratio.

Landsat TM and ETM+ spectral bands are useful to characterize vegetation (Cohen et al
2010). Both band 4 (near infrared) and band 7 (shavte infrared) are associated with
vegetation; bnd 4 with chlorophyll content and band 7 with water content in vegetation
(Wulderet al2009). For instance, in the naafrared (band 4) portion of the spectrum

live vegetation has high reflectance values, and in the-slame infrared (band 7)

portionof the spectrum live vegetation has low reflectance values. NBR values have been
shown to be useful to detect changes to the trajectory of a pixel value over time that are

associated with loss of vegetative cover (Chan@#2016; Gomezt al2016; Jammn et
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al 2016) and are used by the C2C protocol (HermosilEl2015a). Differences in NBR

values are also used to perform breakpoint analysis in this project, therefore the
production of annual NBR raster i nppagtes and
change event detection and subsequent <cl as

created in R.

The input required to generate annual NBR layers is Landsat TM or ETM+ bands 4 (near
infrared) and 7 (showvave infrared) in raster format (Wuldet al2009; Jarroret al

2016). NBR values are computed using the following formula:

NBR = (B4- B7) / (B4 + B7) (1)
where B4 = band 4, and B7 = band 7

This was completed in ArcGIS using the Raster Calculator tool. The output of this
process is an annualyer of NBR values. This process is repeated for all years inclusive
of 1984 and 2012, a total of twertyne raster files representing NBR values are
produced. NBR values range from negative to positive dne< NBR <= 1). Negative
NBR values represeareas of no vegetatior.(.,bare ground); whereas positive NBR

values are indicative of healthy vegetation.

NBR values can used in change detection by subtracting each NBR raster file from that
of the previous year (Wuldetal2 0 0 9 ) , g e n easterfiléesnThisispN B R

accomplished using the following formula:
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® NBR =:17(NERB)R (2)

where NBR = annual NBR values, n = year

This was completed in R. The output of this process is a series of 8@y delta

NBR raster files which repreast the difference in NBR values between on year and the

preceding year. The values in the ®@®NBR ras
two(-2 <= NBR <= 2). Negative @®NBR values pre
breakpoint, which is a negatigee g ment i n a pixel ds spectral
bepresent. Zero @®NBR values indicate that n
sequential years. The occurrence of positi

experiencing an increase in vegetat(e.g.,postdisturbance recoveryhote that these

areas were not analyzed in the present thesis but will be the subject of a future

investigaton The greater the absolute @®NBR value
in NBR values betweentwoyears Lower abs ol e.g.,thoseped Rroy al ues
may not represent a discrete change event, however a gradual change can be identified
when o®oNBR values exhibit a decreasing or i

years.

4.2.4 Threshold for detection.

The goal of implementing a novel threshold for change detection is to improve the
accuracy of detection for seismic lines relative to accuracy obtained by the C2C protocaol,
and then include detected seismic line objects in classification. Change events wer

detected in the tempor al domain using ®NBR
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from R and opened in ArcGIS to obtain mean and standard deviation pixel values of the
NBR raster files, statistical i nf@gr mati on
ArcGIS. The rationale for using mean and standard deviation values to detect changes in

a pixel 6s tr aj e cthehistpgramiofpdBIR) hv a li uaes i ex hihbaitt
distribution that approximates normaligs typified by a belshaped curverhe maprity

of @NBR pixel values are approxi mately zer
with distance from zero. A value of zero represents no change in NBR value between

years. Therefore the detection of change events, represented by negativasggmen

pi xel és trajectory, can be accomplished us
pixel values at some distance from the mean. While this project is interested in the

negative segment of a pixel trajectory, the mean and standard deviaffaiso be

useful for identifying positive segments. These positive segments would represent an
increase in vegetation from one year to the next, rather than a removal of vegetation as is

the case with negative segments. Identifying positive segments fagilithte

regeneration (i.e. revegetation) monitoring, allow the persistence of a change to be

identified €.g.,number of years following a change event required for a return+to pre

change conditions), among other applications.

The mean and standard dBtion values for each year were averaged, the averaged mean
and standard deviation values were used to determine the thresholds for ddtestion.
possible that moraccurate detection may hehieved by considering each change year
independentlythususingthe mean and standard deviation value®fdy the change

year under considerationh& decision to use a sageraged/alue is justifiedas this

method reduces varianderénklin et al 2006 Furthermorethe greatest difference
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between the mininrm or maximum mean value and the computed average of mean

®®NBR values is |l ess that 0.1 %. The greate
standard deviations is above 0. 1%. However
layer representing new chgeevents in 2002 is omitted the difference between annual

and averaged o®NBR valwues is |l ess than 0.1
that covered an area approximately equal tofdtieof the study area that created an

abnormallylargestad ar d devi ati on relative to all (o JAVAN:

Recl assified raster files were derived fro
represent areas where changes were detected, and values of zero represent no change.
Change events reclassified agonr e pr esent negati ve @NBR pi X
1.5, or 2.0 standard deviations from the mean. Four iterations were conducted in R using
different distances from the mean as thresholds for change detection. The following

formula represents the logised to produce reclassified raster layers

0 = x @NBR < [& ®NBR + nl0 @oNBR@ < X mN

where x = ®NBR value of a given pixel, & =
standard deviations from the mean, O = no change, and 1= change.

Thisformula represents thetiien R command used to create four new raster series

based on inputted o@NBR values, the average
deviation ®@NBR values. Mul tiple iIterations
mostuseful for identifying seismic line®(g.,the threshold that results in highest

detection accuracy).

35| Page



4.2.5 Postprocessing.

The raster series representing annual changes using four thresholds were imported from R

to ArcGIS as TIFF files. For further analysibese files needed to be converted from

floating data, which is the default, to integer. As this project is interested Hibéesad
changes, a mask representing waterbodies w
ArcGIS. Areas where waterbodies occurredemeplaced with NoData values. The

application of a waterbody mask was required to ensure that any changes detected over

waterbodieslid not influence the resulés the focus of this project is on seismic lines.

Detected changes in raster file format @/ezclassified prior to vectorization. Areas of no
change (0) were reclassified as NoData, and areas of change (1) remained the same. This
step was necessary to properly produce change objects, once completed raster change
areas were converted to vectohygmn objects. Polygons were not simplified; thus, the
boundary of a polygon in vector file format matches the perimeter of a change area in
raster file formatThis method was selected for consistency with the C2C protocol, which
does not simfifly changeobjects, as confirmed by a comparison of annual raster change

layers and the C2C objects derived thereof

Once the change objects were produced, an additional column was added to the attribute
table for each vector file to represent area. The Calculate Geometry tool was used in
ArcGIS to determine the area of each polygon in square metres. The C2C protocol
emgdoys a minimum mapping unit (MMU) of half a hectare, as each raster pixel

represented an area of nihendred square metres this mapping includes only change
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objects derived from raster pixel clusters representing change greater than five pixels. For
this project a MMU of a quarter hectare and a half hectare, representing raster pixel
clusters of change areas greater than two and five pixels respectively, were both used.
The Select Attributes tool was used to select polygons greater than these thregholds an
these data were subsequently extracted to new vector layers containing only polygons

larger than the specified area.

A total of threehundred and twentfour annual vector format files were produced. Four
thresholds were used for detection using breakpoi a n aph s i O BSEEN B

1. hEEpner  lonBpner  2on ORIThree area thresholds were used for
inclusion of polygons (ho MMU; 0.25 ha MMU, 0.5 ha MMU). Each series contained
twenty-seven vector format files representing anm@nge events for all years inclusive
of 1985 and 2011. A visual analysis of each vector file series was performed to assess
object quality for subsequent analysis. The vector series representing annual changes

det ect edpnegi fAqPHirdsieolchnd 0.25 hectare MMU were selected.

4.2.6 Contextualizatiorof seismic lines.

Fire, road, harvest, and seismic line characteristics were assessed to evaluate the ability of

a new seismic line feature class to be included in classification alongside currege cha

classes. Annual raster layers for Landsat TM and ETM+ spectral band 4 and band 7, and
the created NBR and @®NBR raster series, we
ArcGIS. Each pixel in these raster files was converted to a point, and each gfdimse

had the same spectral, NBR, or @NBR value

37| Page



ArcGIS was used to combine vector point data with the change objects in the selected
ser ipRst (1gnORIThe attributes associated with the point dé&ta join features,

were added to the attributes of the change objects, the target objects. As change objects
represent multiple pixels, and thus multiple points, several methods were used to combine
or apply point data to change object polygons includingmmmaximum and minimum.

New attribute categories were added to the vector file, and every change object was
assigned new values to these categories. Mean was used to assign each object the mean
value of all points, representing pixel values, occurringpiwia polygon. Maximum and
minimum were used to assign each object the value of the greatest and least point value,
and from this the range of values occurring within an object could be calculated. The
Calculate Geometry tool was used to determine theneéer and area for all objects.

These geometrical metrics were used to then calculate the peraredeamatio, which is a
shape index. Each of these new spectral, geometrical, and descriptive trend analysis

metrics was added to the attribute table.

The g@metrical, spectral, and descriptive trend analysis characteristics of change objects
representing seismic lines were compared to those of the other change types (fire, road,
harvest) to identify distinguishing features. Multiple rules were created atgivirere
conducted using different combinations of metrics and different thresholds to assess
separability of seismic lines from other features. This was completed using the Select By

Attribute tool in ArcGIS.

38| Page



4.2.7 Detection and classification accuracy assessts.

The process described earlier in fAn4d4.2.2 As
seismic |line detectiono was used to assess
file forgat Sm0adeMMUEFD.25ha)and the ability feeismic

lines to be recognized from other change types. A first table was produced summarizing

the detection accuracy per change type in the correct change year, or in the preceding or
subsequent change years, and any difference in detection accurasrbitigveelected

vector series and the C2C protocol. A second table summarizing the metrics used to

distinguish seismic line features from other change types was also produced.
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5 RESULTS

Results are presented with reference to the three hypotie¢estesi to the changes of

interest in this thesis and detection and classification accurkaigs.results of the

systematic evaluation required to confirm that detection and classification accuracies of

road, fire, and harvest features obtained byGaR€ protocol in the study area are

consistent with the results from previous studies are summarized. Next, detection

accuracy results for seismic lines following the application of alternate thresholds based

on mean and standar d presented. &inallyptheorgibhBR v al ues
classification results based on limited metrics, relative to those used to assist with
classification by the C2C protocol, are provided to describe separability of seismic line

features from other change type features.

5.1Hypathesis 1: consistent detection and classification accuracy for fire,

harvest, and road

Accuracy of detection for fire, road, and harvest change types were verified in the correct
year in which they occurred and in the following or preceding years. dextgn fires,
seventy road segments, and a limited sample of twelve harvest areas were evaluated to
determine the detection accuracies of C2C change objects in the study ared. Table
summarizes the detection accuracy per changeftgpethisproject anddentifies the

difference between these results and those obtained by Hermosilla et al (2016).
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Table 3. C2C detection accuracRetection accuracy of C2C change objects for fire, road, and harvest
obtained in this project and detection differences witdse obtained by Hermosilla et al (2016)

Detection rates

Change
type Hermosilla

Correct year +oneyear Total etal 2016  Difference
Fire 0.622 0.243  0.865 0.959 -0.0938
Road 0.745 0.018 0.763 0.663 0.1000
Harvest 0.833 0.000 0.833 0.962 -0.1290

Fire features were detected in the correct year with 62.2% accuracy, and in either the
following or preceding year with 24.3% accuracy. C2C change objects representing fire
change events were detected with 86.5% accuracy. The most tedsntencerning the
performance of the C2C protocol by Hermosilla et al (2016) reported an accuracy of
95.9% for firesn Saskatchewarthere is thus a difference of 9.4% between this project
and Hermosilla et al (2016). New road features were detected in the correct year with
74.5% accuracy, and in either the following or preceding with 1.8% accuracy. Total
detection accuracy of new mbéeatures by C2C change objects was 76.3%. There is a
difference of 10.0% between the road detection accuracy of 66.3% reported by
Hermosilla et al (2016) and the detection accuracy obtained in this project. Harvest
features were detected with 83.33%lie torrect year, as none were found in the
preceding or following years the total detection accuracy was 83.33%. Hermosilla et al

(2016) obtained a detection accuracy of 96.2%, thus there was a difference of 12.9%.

Classification accuracy of C2C changgealts for fire, road, and harvest change types
were assessed using the collected reference data. A confusion matrix summarizing

classification results is shown in Taldle
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Table 4. C2C classification accuracgonfusion matrix for fire, road, and harvesiange types

Reference
User's Commission
Class Fire Road Harvest Unclassified Totals accuracy error
Fire 35 0 0 0 35 1.000 0.000
Road 0 11 0 1 12 0917 0.083
Q
O Harvest 0 8 33 9 50 0.660 0.340
Unclassified 13 35 16 29 93 0.312 0.688
Totals 48 54 49 39
Producer's
accuracy 0.729 0.204 0.673 0.744
Omission error 0.271 0.796 0.327 0.256

1 Unclassified objects are included here as a change class as C2C FID numbeasdwmmdyselected,
rather than reference Fliumbers, to assess classification. Unclassified objects would inresderce
extraction and exploration change types, as wdit@sroad and harvest objects that could not confidently
be classifiegdand other change types

User6s accuracy for fire was the greatest
(66. 0%) . Fire also had the greatest produc
(67.3%) and road (20.4%))s er 6 s accuracy and its compl em
descrbe the proportion of C2C change objects committed to a particular change class that

is actually that change type in the refere
omission error describe the proportion of reference data per change type that has been
attributed to the correct class (Olofssetal2 0 1 3 ) . I n other words, p
describes how accurately C2C change object
how well a class of C2C change objects represents the change type inrthecesfiata.

For instance, reference data (columns) includesHiifty roads. Of these fiftjour roads,

eleven were correctly classified as road. Thus, road in the reference data was classified as
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road in the C2C change objects with 20.4% accuracy. Gtadsin data (rows) includes
twelve C2C change objects that have been classified as road. Ohilebgeroad

objects, eleven are actually roads in the reference data. Therefore, the C2C change class
for road has an accuracy @f.7%. Table5 compares tl classification accuracies from

this project with those obtained by Hermosilla et al (2016).

Table 5. Classification comparison. Differencesdlassificationaccuracyresults types obtained in this
project and those obtained by Hermosilla et al (2016)

User o User 6¢
accuracy accuracy from User 6:Producer 6s
from this Hermosilla et accuracy from  from Hermosilla et
Class project al 2016 Difference  this project al 2016 Difference
Fire 1.00 0.980 0.020 0.729 0.930 -0.201
Road 0.579 0.750 0.167 0.204 0.360 -0.156
Harvest 0.660 0.880 -0.220 0.673 0.880 -0.207

The classification accuracy difference was the least for fire, 2.092@t% f or wuser 0s

accuracy and producerds accuracy respectiyv

roadswas16.7% and156% f or wuser 6s accuracy and produc
The greatest classification accuracy difference was hatliests22.0% and20.7% for

user6s accuracy and producerd6s accuracy re

5.2Hypothesis 2: an alternate threshold can be used to detect seisnhi€

imagery.

The primary interest of this project was to demonstrate that seismic lines can be detected

from LTS imagery. Thisvasmotivated by the lower detection accuracy of seismiesli
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by the C2C protocolffor example13.6% from a random sample of 59 seismic lines that
are visible in the BAP composites, but the prevalence of this type of change type within
the study area. The low detection of seismic lines by the C2C protocol sutigeshe
threshold used for detection by this protocaias sufficientto capture this change type
One interpretation is thain alternate threshqgldesigned to be sensitive to the more
subtle changes known to occur in an area but which are nptitiogoal target of the

C2C protocol approackyould result in higher detection accuracy.

Both the C2C protocol and the methods wused
detect changes in a pixelds trajebBRory ove
and oNBR | ayers produced as part of this p
types can be detectéd/hile it has been suggested that higher resolution data are better

suited to detect seismic lines as they provide greater spatial detail (He et al 2009), some
studieshave shown that a visual interpretation of LTS imagery, while time intensive, can

yield accurate seismic line detection and classificateg.(Komers and Stanojevic

2013; Chen et al 2014). Thuswas expected that seismic line features could be detected

in the NBR and ®NBR | ayers derived. from LT
Thatseismic lines can be discerned in these layers indicates that an appropriate threshold

for detection will allow these features to be captured in the change data. Two examples of

the types of seismic lines that occur in the study area are shown in &£igure
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Figure 4. Seismic linesiNB R and oNB R.Images shewwo tiypasyokseigmic lines occurring in 1990
and2000 a) NBR 1990 b) @NBR 1990, c¢c) NBR 2000, and d) oNE

As Figure4 suggests, there is significant intra clgasation with seismic lines. They vary in
length and width, occur in varying densities and magpawur with other types of change

features related to resource extraction activigeg. (wellsites), surfaces may be herbaceous or
the substrate may be eoged, and the degree to which new seismic lines represent a difference
from prechange conditions varies.@.,seismic line through a forest versus a harvested area).

These latter two sources of variation can be seen in Figukich illustrates yeato-year
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changes in the trajectory fufur randomly selected pixels within seismic lines occurring in 1990

and in 2000.
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Figure 5. Seismic line [xel trajectoriesTwo pixels wererandomly selected frora seismic line in 1990 arahother
two wererandomly selected from a seismic line2@0Q graphss how t he variation in a pixel
breakpoints representing the new seismic lines in these; yarixel from seismitine new in 1990, b) pixel from
seismic line new in 1990, c) pixel from seismic line new in 2000, and d) pixel from seismic line new in 2000.

Four experi megwvsm!| OgphSiipessth dbn®EpnEE  LonBpNe /
2 . §nB)for changedetection were used in an effort to capture the seismic lines that can be seen
in the annual NBR and oNBR | ayers. The applic

of change objects, one series for each threshold. A visual assessment ofribesease
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performed to identify the series that included the greatest number of seismic line features and the
least amount of noise. A lower threshold should detect more change features, whereas a higher
threshold would omit these features. Figaikustrates the change objects and noise detected

using the four experimental thresholds.

a) b)
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Figure 6. Detected seismic line€omparison of detectegkismic linesrom 1990 and 2000sing four experimental

thresholds based on mean and standard deviationyalues) 1990 wusing threshold of ¢ @N
using threshold of &@NBR + 1. OBIRpNBRL . 5cl)gNIBORS, 0 du)s i1n9g9 Ot hurs
of egpNBR + 2. 00m@NBR, e) 2000 using threshold of &e@NBR

1. 00pNBR, g) 2000 wusing threshold of e®@NBR + 1.500mNBR,

This assessment confirmed that a | ower thresh
values for detection captures more change features, and a higher threshold captures less change
features. Noise showed a similar pattern, but in reverse with mse atdower thresholds and

less noise at higher thresholds. While information was not provided to enable the identification

48| Page



of those pixels that were assigned an artificial value, anomalies can be detected in a visual
assessment of BAP composites or ayets derived from BAP composites. Figdndustrates

one of these anomalous areas where it is likely that a larger quantity of synthetic pixel values
was required and generated a larger quantity of noise that can be seen in the series produced

using theepne R 1o OHIreshold.

Figure 7. Anomalousareasand noiseC o mp a r i s o mayecahd dgy@¢tBdRanges from 199¢hows presence
of noise focused in anomalous area likely to be where high amousyatbktic pixel values were requiréslg.,
due to cloud cover); a) 1990 oNBR, and b) 1990 detect e

The change object seriegnes@e bedmins sldctedferi ng a t h
further analysis. While higher thresholds include less noise, this series inoladgdeismic

lines, the feature of interest in this project, which were not captured by higher threBimids.

8 illustrates the captured seismic lireafures from the selected series in comparison to the C2C

change objects, using the same examples from 1990 and 2000.
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b)

C)

d)

Figure 8. Detection by C2C protocol and by this projestcomparison of objects detected using the selected series
C2C protocol
and

in this project and

e PNBR + 1. 00@NBR

An assessment of the deiea accuracy of randomly selected seismic line features stratified by
year yielded an accuracy of 39.0%, this represents an increase of 25.4% over the detection

accuracy of 13.6% obtained by the C2C protatipécts A summary of detection accuracy

by

t he
object s,

change obj ect

50| Page



achiewed by this experimental threshold, and the differences between the detection accuracy

obtained by this method and that of the C2C protocol is provided in able

Table 6. Detection accuraciesf C2C objects and objects created in this project.

Class C2C object e + U object
detection rate detection rate

Correct year +oneyear Total Correct year +oneyear Total Difference

Seismic lines 0.136 0.000 0.136 0.390 0.000 0.390 0.254
Fire 0.622 0.243 0.865 0.860 0.060 0.920 0.055
Harvest 0.833 0.000 0.833 0.833 0.000 0.833 0.000
All road types 0.745 0.018 0.763 0.849 0.041 0.890 0.127
Paved 1.000 0.000 1.000 1.000 0.000 1.000 0.000
Gravel 0.963 0.000 0.963 0.741 0.074 0.815 -0.148
Substrate 0.545 0.036 0.582 0.909 0.036 0.945 0.364
Herbaceous 0.473 0.036 0.509 0.745 0.055 0.800 0.291

Table6 also shows that detection accuracy improved for certain other change types. Harvest
detection was unchanged from that obtained by the @i€tts Fire detection accuracy was
92.0%, an improvement of 5.5%. Overall detection accuracy for roads improved by 12.7% to
89.0%. Roads were also separated and assessed by surface type; paved roads had the same
accuracy, gravel road detection accuracy decdelagd 4.8% to 81.5%, detection of roads with
exposed substrate improved by 36.4% to 94.5%, and herbaceous road detection improved by

29.1% to 80.0%.
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