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Abstract 
This study presents an in-depth examination of the surface deformation of boreal 

peatlands around energy development infrastructure with focus on edge effects on 

mineral-filled resource access roads, an area of strong scientific interest due to their 

vulnerability to hydrological changes. In this thesis Interferometric Synthetic Aperture 

Radar (InSAR) techniques are employed, namely Persistent Scatterer Interferometry (PSI) 

and Small Baseline Subset (SBAS) to determine and characterize the effects of 

anthropogenic impacts on the complex boreal peatland environments in Aspen, northeast 

of Fort McMurray, Alberta, Canada. 

A key revelation of this study is the evident discrepancy between the PSI and SBAS 

timeseries, with differences of the two methodological approaches outweighing 

distinctions among diverse ecosites and between upstream and downstream side of the 

Aspen Road. Factors such as inadequate spacing and data resolution contribute to this 

limitation and highlight the necessity of careful interpretation as well as prudent 

methodological choices. 

The examination of the 2021 dataset, where both methodological approaches show a 

similar pattern underscores the potential of InSAR to extract valuable information. Despite 

the qualitative character of results, the statistical robustness for quantification of the 

surface deformations remains challenging.  

The conducted research further demonstrates the utility of velocity maps, especially based 

on the SBAS results. It offers detailed spatial characteristics, especially in vegetated areas, 

where PSI technique struggles due to incoherence. This reinforces the value of using 

complementary InSAR methods in capturing comprehensive range of surface deformation. 

The yearly velocity analysis reveals spatial patterns that can be connected to the level of 

functionality of the installed culverts. 

In conclusion, the potential and complexities of employing InSAR techniques on edge 

effects in monitoring boreal peatland surface deformation are recognized. The findings 

underscore the potential of InSAR methods to contribute valuable insights, aid planning 

and decision-making as well as monitoring the integrity or disturbances in the boreal 

wetlands of northern Alberta. 
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1. Introduction 

1.1 Motivation and State of the Art 
Peatlands, defined as wetland ecosystems with >40 cm of organic matter, are an integral 

part of the boreal landscape, important reservoirs of global terrestrial carbon (C) and are 

strongly linked to hydrological processes from the pore space to landscape scale (Plach et 

al., 2017; Price, 2003; Willier et al., 2022).  They provide essential ecosystem and 

landscape functions, including being key to flood storage and desynchronisation, 

groundwater recharge and discharge, dissipating erosive forces and playing major roles as 

habitat for other biota (Howie and Hebda, 2018; Plach et al., 2017; Price, 2003; Willier et 

al., 2022).  Water supply, driven by Water Table (WT) depth and soil moisture, influences 

environmental parameters like soil temperature, vegetation composition and microbial 

communities and activity (Plach et al., 2017). The peatlands of Western Canada cover 365 

157 km² and store 2.1% of the worlds terrestrial C (Vitt et al., 2000).  30% of the boreal 

region of Canada on average is covered by peatlands (Downing and Pettapiece, 2006, 

p. 46).  

As the Alberta Oil Sands (AOS), representing one of the world’s largest oil deposits, are 

located in the boreal area, this natural system is impacted by numerous anthropogenic 

disturbances, mostly through energy development infrastructure (Canadian Association of 

Petroleum producers, 2022 (CAPP), Figure 1). The AOS industrial operations necessitate a 

variety of facilities and transformation on the landscape for open pit mining and in situ 

extraction techniques, since much of the deposits are too deep for surface mining. Those 

industrial activities threaten peatland integrity in boreal forests and include the 

construction of seismic lines (petroleum-exploration lines), pipelines, powerlines, well 

pads and interconnecting resource access roads (Roberts et al., 2022; Willier et al., 2022). 

Although resource access roads occur in many areas of the boreal forest, they are 

particularly dense in the province of Alberta due to the AOS. The construction process 

raises the road above the peat surface and involves initial clearing of the vegetation, in 

some cases placing surficial soil layers, geotextile and stockpiling of excess materials, 

before placement of the mineral fill layer, which can be several meters thick  (Plach et al., 

2017; Saraswati et al., 2020b; Saraswati and Strack, 2019). These roads can have 

considerable effects on local hydrology when constructed in peatlands as they cause 
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hydrological disruption, especially when built perpendicular to flow direction. Acting as 

dams, they limit the hydrological connection between fragmented parts of the peatland 

and therefore block surface and subsurface water flow, leading to bilateral flooding and 

drying (Saraswati and Strack, 2019; Willier et al., 2022).  

These disturbances lead to changes in the hydrological regime, resulting in diverse effects 

on vegetation. The upstream side of the road experiences more flooding, causing mortality 

or stunted growth in woody vegetation due to poor oxygen conditions in the root zone 

(Saraswati et al., 2020a). Conversely, the downstream side may suffer from a prolonged 

drop in the WT, leading to deeper root systems, increased growth in woody plants and 

inducing a positive feedback drying loop that would enhance the ecosystem impact of 

infrastructure within wetlands (Saraswati et al., 2020b; Willier et al., 2022). These 

hydrological impacts likely vary between peatland types, depending on hydromorphic 

setting and directionality of water flow relative to the orientation of the constructed road. 

Other authors anticipate mitigation of those edge effects through improved road building 

and adequate culvert installation (Willier et al., 2022), whereas in long-term it is evident 

that the upstream side of the road will experience flooding (Bocking et al., 2017; Ducks 

Unlimited Canada, 2016, p. 15; Willier et al., 2022). On a large scale, the wetlands of 

Canada play a major role in C sequestration and storage with their C balance being driven 

by their hydrological regime. Any resource management activity that disrupts the ability 

to sequester C must come under increased scrutiny and those impacts and effects must 

be understood in their full extend (Ducks Unlimited Canada, 2016).  

Peatland surfaces are particularly dynamic and move in response to changes in the mass 

of water, gas and organic matter stored within the peat body (mire breathing). This rising 

and lowering of the surface is one of the key self-regulating feedback mechanisms 

providing resilience and maintaining function during periods of hydrological stress and is 

based on a poro-elastic mechanical response to ecohydrological processes. Changes are 

caused by both seasonal and long-term environmental change (Alshammari et al., 2020; 

Bradley et al., 2021; Howie and Hebda, 2018). The subject of this study is the change 

caused by the resource access road built during 2017 – 2019 in ASPEN on the Imperial Oil 

Resources Limited’s (herein Imperial) in-situ lease (referred to as ‘Aspen’) 45 km northeast 

of Fort McMurray. As field-based techniques to measure surface deformation are not cost-
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effective over large areas and long time periods, the remote sensing technique of 

interferometric synthetic aperture radar (InSAR) is a promising alternative (Alshammari et 

al., 2020; Hoyt et al., 2020; Tampuu et al., 2020). 

 

Figure 1: Oil Sands Areas in Alberta (AOS). The deposit areas are marked with orange and the surface minable 
areas with purple. The area is categorized into Peace River, Athabasca and Cold Lake deposits. Most of the 
area is in Alberta’s boreal forest (King and Yetter, 2011). 

“Remote Sensing data can greatly contribute to the monitoring task by providing timely, 

synoptic, cost-efficient and repetitive information about the status of the Earth’s 

surface” (Atzberger, 2013). 

Recent developments in the use of Satellite InSAR to measure seasonal oscillation of 

peatland surface at the site or landscape scale have shown to be highly diagnostic of 

peatland character and condition (Alshammari et al., 2020; Bradley et al., 2021; Hoyt et 

al., 2020; Marshall et al., 2022; Tampuu et al., 2020). As proposed methods to measure 

the surface deformations there are the persistent scatterer (PS) and distributed scatterer 

(DS) approaches as well as mixed forms. Though coherence and interferometric phase are 

two major products of InSAR processing, the data of low coherence are usually, in PS and 

DS approaches, considered to prove little or no value. Nevertheless, Tampuu et al. (2020) 

use the temporal and spatial variation of coherence to provide useful information about 
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hydrological conditions and vegetation cover, allowing delineation of the area inundated 

with surface water and distinguishing different wetland types and assessing short and 

long-term changes. Several studies show that time series InSAR analysis has the potential 

to characterise seasonal mire breathing and long term trends, which are important for 

assessing the WT dynamics, restoration success or to improve spatial models of material 

flow and gas exchange in northern temperate peatlands (Alshammari et al., 2020, 2018; 

Crosetto et al., 2016; Howie and Hebda, 2018; Hoyt et al., 2020; Izumi et al., 2022; Khodaei 

et al., 2023; Lanari et al., 2007; Marshall et al., 2022; Mohammadimanesh et al., 2018; 

Tampuu et al., 2020; Zhou et al., 2019). The edge effects of a resource access road 

disturbing a peat in the boreal region have been examined by several studies, but have 

not yet been fully explored (Elmes et al., 2021; Liu et al., 2015; Plach et al., 2017; Saraswati 

et al., 2020a; Saraswati and Strack, 2019). To the authors knowledge there is no study 

trying to assess the extent and magnitude of access road edge effects using satellite InSAR 

methods.  

This thesis focuses on applying radar remote sensing timeseries analysis of said resource 

access roads and their edge effects. Understanding provides information that can be used 

to inform road planning and mitigation strategies in peatlands, as well as inform buffer 

size considerations when assessing the effects of roads on their surrounding area. 

 

1.2 Research Objectives 
As stated, there is an immediate and critical research need in the analysis of edge effects 

of disturbances in wetlands caused through development of infrastructure. The Aspen 

Road is an opportunity to evaluate the temporal response of a wetland structure and 

function over time and represents a unique possibility to produce the first information of 

this kind in the region. Subsequently a timeseries remote sensing approach is used from 

2017 to 2022, taken only the snow-free period into account, to clarify the two objectives: 

1) Apply and compare two radar remote sensing techniques, Persistent Scatterer 

Interferometry (PSI) and Small Baseline Subset (SBAS), for characterizing surface 

deformation in boreal peatlands. 
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2) Assess and quantify the spatial and temporal extent of energy development 

infrastructure, with focus on mineral-filled resource access roads, on surface 

deformation within various wetland types in northern Alberta. 

 

1.3 BERA Project 
This thesis was conducted within the Boreal Ecosystem and Recovery Assessment (BERA) 

project. The project is a multi-sectoral research partnership of academic institutions, 

private sector companies, a public sector division and a not-for profit organization. The 

project focuses on roads, well pads, seismic lines, forest-harvest areas, and other elements 

of anthropogenic footprints in the boreal forest of Alberta. The central goal is to 

understand the impacts and effects of those anthropogenic and especially industrial 

disturbance on natural ecosystem dynamics. It is aimed for the development of strategies 

for restoring those disturbed landscapes in a system under climate change pressure. A 

disturbance is defined as an event that causes a change in the physical characteristics and 

properties of a environment and disrupts the ecosystem (Bartels et al., 2016). The main 

objectives associated with industrial disturbance are promoting a return to forest cover, 

restoring natural carbon dynamics, maintaining wildlife habitat and enhancing woodland 

caribou habitat, a species-at-risk in Alberta (BERA 2023; Filicetti et al., 2019). There are 

four teams within BERA: Vegetation, Soils and Ecohydrology, Humans and Wildlife, and 

Remote Sensing (RS). The thesis is part of the work of the remote sensing team (project 

code RS3.1) and is strongly connecting to the Soils and Ecohydrology team through the WT 

parameter. The focus of the RS team is to develop workflows and planning tools to assist 

management and research activities associated with assessment and monitoring of 

disturbances and restoration. The Carbon dynamics team goal is to understand and 

quantify the impact of various factors on ecosystem C dynamics as well as identifying the 

effects of disturbances on soil C cycling and vegetation composition, in order to develop 

best practices for the recovery of natural C dynamics (BERA 2023). The process diagrams 

of the RS and Carbon dynamics team depict a subset of the high-priority targets. The key 

areas of focus and interactions within this study are indicated by the red markings 

(Figure 2). 
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Figure 2: BERA project diagrams of the Remote Sensing (upper) and Carbon Dynamics (lower) theme 
complex. Each theme addresses strategic priorities that are coupled with one or more tactical deliverables. 
In red is marked where this thesis contributes to the goal and interferes with the high priority targets 
(adapted BERA 2023). 
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2. Materials and Methods 

2.1 Study Area 
The study area is located about 45 km northeast of Fort Mc Murray, Alberta and connects 

to the East Athabasca highway (Figure 3). The Imperial lease is called Aspen and consists 

of 75% wetland cover making it an ideal area to evaluate wetland response to energy 

industry development. The Aspen facility contains a relatively new access road, where the 

vegetation was cleared before 2017 and therefore peat has already been compressed. 

According to Sentinel 2 images from ESA Copernicus Sentinel-Hub the mineral layer has 

been added in the winter season 2018/2019 between November and February. In addition 

to the road construction, in the surrounding area typical in-situ infrastructure at various 

stages of construction, including cleared but not yet constructed well pads and road 

sections have been built. The project framework is a $2.6 billion investment to develop 

75,000 barrels per day of bitumen production (Imperial, 2018). The project got ramped 

down in March 2019 due to market uncertainty.  

Figure 3 displays the AOI encompassing the Aspen lease, the road infrastructure and the 

placement of groundwater wells installed in August 2021 and the meteorological station, 

installed in September 2020. There is a second weather station northwest on the Kearl 

lease. The map indicates the location of effectively and ineffectively installed culverts in 

red and blue crosses. 

According to Alberta Parks (2015), the study area is situated in the boreal forest natural 

subregion. The plant communities are largely determined by the presence of wetland 

ecosystems or drier upland regions. The wetland classification map (Figure 4) shows the 

different wetland types and the shapefiles used for this study. The study differentiates 

between a bog and a fen, and the polygons are drawn north and south of the road for each 

ecosite type. The shapefiles cover an area in between 250 and 300 m of distance from the 

road in perpendicular direction. This is done analogously to the positioning of the 

groundwater wells. From now on it is referred to the various ecosites as B1 and B2 for the 

bog north and south of the road and F1 (north) and F2 (south) for the fen. The bog 

shapefiles consist of a shrubby bog (BS) and a wooded coniferous bog (BWc). The fens 

subtypes have similar classifications, namely shrubby fen (FS) and wooded coniferous fen 

(FWc).  
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Figure 3: Overview of the Aspen study area. In the left top corner, the Aspen Road connects to the East 
Athabasca Highway. The blue crosses mark the effective installed culverts (scouted in June 2023), the orange 
crosses the semi-effective culverts and the red crosses the ineffective culverts. The Bog polygons are in green 
hatched, the fen ones in orange cross hatched. In the East on the large vegetation cleared area the weather 
station is installed. The groundwater wells installed by Dr. Scott Ketchesons lab from Athabasca University 
are symbolized with blue droplets. GCS WGS 1984 is applied. 
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Figure 4: Ecosite types in the study area. It shows the wetland classification provided by Imperial. The culverts 
and groundwater wells are symbolized by crosses and droplets respectively. The polygons of the Bog and Fen 
are located north and south of the road and named B1 for Bog north and B2 for south, as well as F1 and F2 
for the fens. Spatial reference: NAD 1983 UTM Zone 12N. 
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A bogs ground surface is composed of peat and is isolated from surface water and 

groundwater influences due to elevation; it is typically >40 cm above the WT. Elevation of 

the ground surface can result from the accumulation of peat and as a result bogs are 

ombrogenous systems fed exclusively by precipitation (Government of Alberta, 2015). 

Bogs are permanent wetlands as their moisture levels are effectively maintained by the 

capillary action of Sphagnum mosses. The primary production exceeds decomposition. 

Wooded bogs are defined by a tree cover >25 % by coniferous species, predominantly 

black spruce. The trees tend to be small, stunted, and rarely reaching heights greater than 

ten metres. Common Labrador Tea is the predominant understory shrub, interspersed by 

cranberry species. Shrubby bogs have >25 % shrub cover and less than 25 % tree cover. 

Most shrubs are less than one metre tall. Shrub and ground cover species are similar in 

wooded and shrubby bogs (Ducks Unlimited Canada, 2016; Government of Alberta, 2015).  

Fens are minerogenous peatlands, meaning they receive water from a variety of sources 

as precipitation, groundwater and/or surface and subsurface flows. Fens are permanently 

saturated wetlands and have fresh to slightly brackish water. The vegetation is typically 

dominated by sedges. When present, shrubs are one to two metres tall. Many vascular 

plants commonly found in fens are not typically for bogs like various sedges species, 

tamaracks and willows. The wooded fen is defined similarly as the wooded bog, but the 

WT is typically less than 20 cm below the ground surface and black spruce and tamarack 

dominate the treed stratum. Understory shrubs are birches and willows. Shrubby fens 

have the same cover definition as shrubby bogs, but the WT is within 10 cm of the ground 

surface. Common species include various birch and willow types and the shrubs reach one 

to two metres, which makes them taller than the ericaceous shrubs that dominate bogs 

(Ducks Unlimited Canada, 2016; Government of Alberta, 2015). 
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2.2 Data  

2.2.1 Sentinel 1 

Mission  

Sentinel 1 is a Synthetic Aperture Radar (SAR) mission, which provides continuous all-

weather day and night imagery at C-band. It is in a near-polar, sun synchronous orbit with 

a 12-day repeat cycle for a single satellite and has a right looking flight attitude. The 

mission is based on a constellation of two identical satellites, Sentinel 1A and 1B with a 

180° orbital phasing difference. 1A was launched in 2014, 1B in 2016 and in the two-

satellite constellation the repeat cycle can deliver a six-day repeat cycle at the equator. 

The center frequency is 5.405 GHz and there are four different operating modes 

characterised with different spatial resolutions and coverages. The modes are Stripmap, 

Interferometric Wide Swath Mode (IW), Extra Wide Swath Mode and Wave. Over land 

they primarily operate in IW and allow combining a large swath width, 250 km, with a 

moderate geometric resolution, 5 m by 20 m. Interferometry is ensured by sufficient 

overlap. The IW mode images three sub-swaths using Terrain Observation with Progressive 

Scans SAR (TOPSAR).  The incidence angle is between 29° – 46° and the polarization is 

HH+HV, VV+VH, HH, VV. The Level-1 products are generally available, intended for most 

users and are produced in Single Look Complex (SLC) or Ground Range Detected. The SLC 

product consists of focused SAR data, geo-referenced using orbit and attitude data from 

the satellite. For IW each sub-swath consists of a series of bursts, which are re-sampled to 

a common pixel spacing grid and therefore ensures that interferometry between pairs of 

products acquired multiple repeat periods apart can be performed (ESA, 2023, 2021, 2015, 

2012). 

Used data and orbits 

For this study, Level 1 SLC data in mode IW is used. The AOI is covered by the orbit tracks 

49 (West) ,78 (East) and 151 (Middle), from now on referred to as West, East and Middle 

in respect of their position to the AOI (Figure 5). The West orbit track is available through 

the whole study period from 2017 to 2022, the East orbit track starting in 2021 and the 

Middle one until the end of Sentinel 1B in December 2021. Table 1 gives an overview of 

the respective snow-free periods used for analysis and the available Sentinel 1 A/B scenes 

orbit-track-wise for the study period. In order to provide the possibility of a plausibility 

check based on different viewing geometries the ascending flight direction is used as it 
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covers the AOI with three orbit tracks, whereas descending only covers one (Aslan et al., 

2019).  Furthermore, the only descending orbit track covering the AOI is track 79 and was 

based on satellite Sentinel 1B, which results in a data coverage lasting only until the end 

of the mission in December 2021 (Figure 6). The snow free period for each year has been 

obtained through the ESA Sentinel-hub, where a manual check of Sentinel 2 imagery 

provides the information. 

 

Figure 5: Ascending Sentinel 1 orbit tracks 49 (West), 78 (East) and 151 (Middle) covering the AOI (yellow). 
The figure is north oriented (ASF 2023a). 

 

Figure 6: Descending Sentinel 1 orbit track 79 covering the AOI (yellow). The figure is north oriented (ASF 
2023a). 
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Table 1: Overview of the data availability the various orbit tracks of Sentinel 1 covering the AOI during the snow free period. Data has been retrieved through ASF API. 

YEAR START END 

IMG ASC 
ORBITS 

IMG DES 
ORBIT 

TOTAL 
WEST 

49 
MIDDLE 

151 
EAST 

78 
71 

(only S1B) 

2022 01.May 10.October 19 11 0 8 0 

2021 01.May 28.October 45 15 15 15 30 

2020 03.May 10.October 35 13 12 10 28 

2019 07.May 07.October 24 12 12 0 25 

2018 05.May 04.October 21 10 11 0 24 

2017 2.May 06.October 18 7 11 0 26 

  Total 162 68 61 33 
(Descending image number 

= tile north + tile south) 
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2.2.2 Meteorological Data 
In the AOI vicinity there are two meteorological stations called Aspen and Kearl, named 

after the AOS lease, they are placed on. Aspen is close to the study site and located east 

of the road on the large vegetation cleared area (Figure 3). It is collecting data since 25. 

September 2020. The Kearl station is 27 km northwest of the AOI at the Kearl lake. Its data 

covers the whole study period.  

The climate in the study area is classified as Dfc following the Köppen climate classification. 

It is a subartic climate with cold winters, no dry season and cool summers. The mean 

temperature exceeds the 10 °C isotherm in 1-4 months (Malberg, 2002, p. 287f.). The daily 

average temperature since 2017 was -15.65 °C in January and 18.1 °C in July. Mean 

summer (snow-free period, May to October) precipitation amounts to 292 mm according 

to the Kearl station (Table 2). Note, that the precipitation measurements of the Kearl 

Station for the whole study period in 2020 have been substituted by the Aurora station in 

Fort McMurray due to a malfunctional sensor.  

Table 2: Statistical weather station data from Kearl (black) and Aspen (blue) through the study period. Note 
that the Aspen station has been installed in September 2020 (Data provided by Imperial). 

Year 
Mean Temperature 

January (°C) 
Mean Temperature 

July (°C) 
Yearly Precipitation 

sum (mm) 

2017 -12.1 18.8 111 

2018 -17 17.8 308 

2019 -17 17 259 

2020 -15.7 18 563 

2021 -12.3 -12.5 19.2 17.9 271 271 

2022 -19.8 -20.2 18.8 16.9 242 224 

 

The Kearl Weather Station data retrieved since 2019, the year of adding the mineral filled 

layer to the road, are shown below (Figure 7). The data of the station at Aspen as well as 

the data from 2017 – 2019 can be found in the Appendix. 
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Figure 7: Kearl Weather Station data from 2019 to 2022 in the snow free study period from May to October 
(inclusive). X-axis is the time, y-axis on the left side displays the temperature amplitude in °C. On the second 
y-axis (right) the precipitation amount in mm is displayed. The red line represents daily average temperature, 
in blue bars the daily precipitation amounts are visualized (data provided by Imperial, 2022). 

2.2.3 Groundwater Level Data and Culverts 
The groundwater wells have been installed in August 2021 for scientific monitoring 

purposes. These wells are strategically placed in four transects, each consisting of six wells 

bisecting the road. In order to establish a reference, two additional wells were installed to 

the north of the road at an approximate distance of 450 m. To collect data on WT depth 

6-hourly interval data is logged at each monitoring well. Figure 8 illustrates the data of 

four chosen wells, with two of them located downstream (south) of the road and two 

upstream. The WT depth is represented in negative values relative to the surface, with 

zero defined as the surface level over the available data period. Positive values indicate 

depths above the surface, negative below the surface. One of the wells, referred to as 

MART4_NC_2 (T4_2) is displayed with the confidence interval, a smoothed line, and a non-

smoothed line to effectively depict the amplitude and variability of the data. The raw data 

has been extracted from the well sensors in September 2022 using the WinSitu5 software. 

Additionally, the piezometric data has been corrected for barometric pressure variations. 

 

Figure 8: Timeseries of water table depth of 4 selected groundwater wells in the study area. The surface is 
defined as 0 and below surface as negative values. The values are in centimetres The groundwater wells are 
MART2_5 (blue), MART4_NC_2 (light blue), MART3_EC_3 (lime-green), MART1_5 (forest-green). The light-
blue line shows the confidence interval, smoothed line and non-smoothed line. 

Within the designated study area, a total of 15 culverts have been installed to address the 

restoration of the subsurface and surface waterflow between upstream and downstream 

sides of the road, as well as to mitigate the hydrological barrier (Figure 9). However, the 
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effectiveness of these culverts varies significantly. The culverts have been 

comprehensively scouted on June 4, 2023, conducted by Dr. Scott Ketcheson and Lelia 

Weiland (Table 3, Figure 10). Figure 10 provides visual documentation of the upstream and 

downstream side of an effective culvert (EC11), a semi-effective (EC7) and an ineffective 

culvert (EC6), revealing their functional performance, which will vary in response to 

hydrological conditions. 

EC11 is an effective functioning culvert. It provides a sufficient streamflow from the 

upstream to the downstream side. The upstream side of EC7 shows deep ponds, while the 

flow is limited. EC6 shows almost no flow but could be effective at very high WT levels. In 

the background some smaller ponds can be detected but the culverts level is too high to 

re-establish subsurface flow. 

 

Figure 9: In-depth focus on culverts label and position and the selected groundwater wells (green). The 
culverts are classified, following table 3, as effective (blue), semi-effective (orange) and ineffective (red). The 
map shows the analysis relevant culverts. Spatial reference: GCS WGS 1984. 
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Table 3: Culvert overview. Name, function and description of culverts within the study area Aspen. (Data 
provided by Dr. Scott Ketcheson, June 2023). 

 

 

Upstream Downstream 

Culvert EC11 - effective 

  

Name Function Description 
EC1 effective  

EC2 effective Culvert is parallel to the road on the north side and 
leads to EC3. 

EC3 effective  

EC4 effective Low flow but flowing. 

EC5 effective  

EC6 ineffective Almost no flow. Effective at very high flow conditions 

CUL_PAR effective Parallel to the road on the north side. Water rerouting 
to the West instead to EC6. 

EC7 semi-effective Flows, but deep ponds on upstream side. No ponds on 
downstream side. 

EC8 semi-effective Shallow and narrow on upstream side. Nothing on 
downstream side. 

EC9 effective Low flow. Very ponded on both sides. 

EC10 effective Low flow. Ponding on both sides 

EC11 effective  

EC12 ineffective Draining the lakes on the north side. Very low flow. Big 
ponds on the north side. 

EC13 ineffective  

EC14 effective  
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Culvert EC7 – semi-effective 

  

Culvert EC6 – ineffective  

  
Figure 10: Images of culverts EC11 – effective, EC7 semi-effective and EC6 – ineffective. The left column shows 
the upstream side and the right column the downstream one (Photos taken by Dr. Scott Ketecheson and Lelia 
Weiland in June 2023). 
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2.3 InSAR Methods 
The basic principles of SAR and InSAR can be obtained e.g. from Bamler and Hartl, 1998; 

ESA, 2007; Jansing, 2021; Rosen et al., 2000. Time series InSAR is a powerful geodetic 

technique to derive the temporal evolution of surface deformation from a series of 

repeated SAR images. It is widely used to monitor seasonal and long-term line-of-sight 

(LOS) deformation of the Earth’s surface. The decorrelation of the SAR signal, the 

atmospheric delay and the phase unwrapping error limit the accuracy and precision of the 

received surface displacement. Decorrelation is mainly caused by changes of the surface 

backscatter characteristics over time and by the non-ideal acquisition strategy of SAR 

satellites (Alshammari et al., 2018; Hanssen and Van Leijen, 2008; Hoyt et al., 2020; Izumi 

et al., 2022; Tampuu et al., 2020; Yunjun et al., 2019).  

To overcome the limitations associated with SAR satellites, including the revisit time of 6 

to 12 days (temporal baseline) and the orbit separation (spatial baseline) between repeat 

acquisitions, two groups of InSAR time series techniques have been developed: PSI 

methods and distributed scatterer (DS) methods (Yunjun et al., 2019). The PSI methods 

focus on the phase-stable point scatterers as a function of time, where it is assumed that 

there is a single dominant scatterer in a resolution cell. It attempts to solve two problems 

simultaneously. First, coherent scatterers need to be identified, whose phase history is 

dominated by the geometry between satellite and scatterer, rather than physical changes 

within the scatterers’ resolution cell. Second, for scatterers deemed coherent, parameters, 

such as their relative geometric height, their displacement behaviour in time, atmospheric 

delay factors and integer phase ambiguities, need to be reliably estimated (Alshammari et 

al., 2020; Hanssen and Van Leijen, 2008). For this reason, the PSI is less likely to succeed 

over forest canopies or densely vegetated areas. In the PSI method a single master image 

is chosen to create the interferograms, in this study for each snow-free season, which 

allows reduction of noise contribution of the master image prior to phase unwrapping as 

it is present in all interferograms (Figure 11, left; Ma et al., 2021).   

The second method uses a DS approach, which relaxes the strict limit on the phase stability 

and includes areas that are affected by decorrelation through the exploitation of the 

redundant network of interferograms. There are two categories of methods proposed 

based on the interferogram network for deformation inversion. The first one uses all 
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possible interferograms of employed SAR SLC images (full network approach). The second 

one uses parts of all possible interferograms characterised by small spatio-temporal 

baseline thresholds, called Small Baseline Subset (SBAS), which is used in this study 

(Alshammari et al., 2020; Izumi et al., 2022). It was first proposed by Berardino et al. (2002) 

and uses multi-master images (Figure 11, right; Li et al., 2022) 

If InSAR methods can produce reliable and diagnostic time series over peatland, the 

technique would enable a new view and understanding of peatland surface motion and 

its relationship to condition and hydrology on a landscape scale. It would become a 

powerful tool for peatland monitoring across whole catchments, regions and countries. 

But there is a key barrier of applying InSAR to quantify peatland dynamics: the mismatch 

between large scale of observations, accuracy and precision of InSAR and small-scale field 

measurements. This makes it extremely difficult to validate the accuracy of the results. 

The main problem is to cover a resolution cell of 40 x 40 m, as considered in this study, 

with appropriate transects and point measurements (Alshammari et al., 2020). This is one 

of the reasons for choosing the ascending Sentinel 1 flight direction, as it covers the AOI 

with three different orbit tracks and therefore with three different looking geometries. 

The results can still be valuable if the concerns about absolute accuracy are abandoned 

and the focus shifted on whether the characteristics of the InSAR time series can be used 

to quantify the peatland condition, in effect using the InSAR time series as an operationally 

defined measure or proxy. This works under the premise, that the results are 

representative of the surface motion and that in turn surface motion is representative of 

peat condition (Alshammari et al., 2020). In this study both, the PSI and SBAS method 

approaches are applied.  

 
 

Figure 11:  Example baseline plot for (a) the PSI and (b) the SBAS method based on the data from 2022 East 
Orbit track. 



 
22 

 

2.3.1 Persistent Scatterer Interferometry Workflow 
The PSI is a powerful advanced InSAR technique able to measure and monitor 

displacements of the Earth’s surface over time with high accuracy. Hooper et al. (2004) 

proposed a novel PS selection using characteristics of phase, which is suitable to find low-

amplitude natural targets with phase stability. This work originated the most widely used 

software package StaMPS (Stanford method for Persistent Scatterers)(Delgado Blasco et 

al., 2019; Hooper et al., 2018).   

The workflow used in this study follows the SNAP2StaMPS proposed by Blasco & Foumelis 

together with A. Hooper (2018) to automate the pre-processing of the Sentinel-1 SLC data 

and their preparation for ingestion to StaMPS. The pre-processing is based on using free 

software SNAP (Sentinel Application Platform by ESA) and SNAP2StaMPS python scripts, 

followed by the StaMPS processing in MATLAB. All the processes are conducted in a 

VirtualBox Linux Ubuntu 22.0 environment as recommended by several authors and the 

GitLab and ESA SNAP Forum community (Blasco et al., 2018; Hooper et al., 2018; Serco 

Italia SPA, 2020). The workflow is performed individually for each year and each orbit 

track. The complete processing steps are visualized in Figure 13. 

Pre-processing with SNAP and SNAP2StaMPS 

First, the data is downloaded via the Alaska Satellite Facility API using python and 

considering only the snow-free period (see Table X) and ascending mode images. To select 

the ideal master image the SNAP InSAR Stack Overview function is used. The function 

minimises the distribution of the perpendicular baseline values and tries to maximize the 

expected stack coherence of the interferometric stack. This should lead to improved visual 

interpretation of the interferograms and assist quality assessment. Once the master is 

selected, its sub-setting is done via the TOPSAR Split operator, where the Subswath is 

chosen for each orbit track in order to cover the AOI, and the number of Bursts is reduced 

to a minimum to still cover the AOI in full extend, but to reduce computation time and 

power (Figure 12). The VV polarisation is selected, and the orbit files get applied to provide 

accurate satellite position and velocity information.   
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Figure 12: TOPSAR Split Operator for the Master images. Example is chosen from the Middle Orbit. Selected 
Options are VV polarization, the IW2 subswath and the bursts 2 to 5 in order to cover the AOI.  

To run the next steps in an automated way, the snap2stamps includes a project.conf file, 

where all necessary user inputs, e.g., AOI coordinates, computational power, folder paths 

are defined. Before the co-registration of master and slave images, the slaves must be 

split, and their orbit information updated analogously to the master image before. The co-

registration of each slave image with the master image is performed with the Back-Coding 

operator using the Digital Elevation Model (DEM) and the orbital parameters. The SRTM 

DEM with three arc-second (~90 m) spatial resolution was used, because the differences 

in the results to the one arc-second product were negligible, but the implementation and 

computational time is more efficient with the three arc-second products. This is followed 

by the debursting process, which resamples the IW SLC product to a common pixel spacing 

grid in range and azimuth and merges the bursts to a continues image. Now the complex 

interferogram can be computed with subtraction of the flat-earth phase. The flat-earth 

phase is the phase present in the interferometric signal due to the curvature of the 

reference surface. The last pre-processing step is to remove the topographic phase 

information. The operator first “radarcodes” the DEM and then subtracts it from the 

complex interferogram (Blasco et al., 2018; Serco Italia SPA, 2020).   

Summed up, the pre-processing steps consist of forming a stack of co-registered single-

master interferograms. The final step before ingestion of the data into StaMPS for PSI 

processing is the estimation of the amplitude dispersion index. The DA value describes the 

amplitude stability, which is used to pre-select pixels and therefore reduces the number 

of pixels for the phase analysis. It is calculated as:  
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Equation 1 𝐷𝐴 =  
σ𝐴

μA
 

 (Mancini et al., 2021; Serco Italia SPA, 2020) 
 

Where σA is the standard deviation and μA is the mean of a series of amplitude values. The 

range is recommended between 0.40 and 0.42. In this study 0.42 is used as more pixels 

are selected for phase analysis (Blasco et al., 2018; Serco Italia SPA, 2020). 

Processing with StaMPS 

The processing with StaMPS is based on various parameters, which can be adjusted and 

controlled. Only the ones that have been changed for this study are mentioned as mostly 

the default setting has been used. The first step of StaMPS is to load in the data into 

formats required for PS processing and storing them in the MATLAB workspaces. Then the 

phase noise is estimated in an iterative process for each candidate pixel in every 

interferogram. Pixels are selected based on their noise characteristics. These pixels are 

then weeded, dropping those that are due to signal contribution from neighbouring 

ground resolution elements and those deemed too noisy. Following, the wrapped phase 

of the selected pixels is corrected for spatially uncorrelated look angle (DEM) error. Once 

the PS selection is done, the phase can be unwrapped, and the spatially correlated errors 

estimated. This estimates the total DEM (look angle) error, and the master atmosphere 

and orbit error. The last step of StaMPS, atmospheric filtering has not been carried out, as 

no atmospheric data of the study area was available. It could improve the quality of the 

results, but is not necessary for the process to work (Blasco et al., 2018; Mancini et al., 

2021; Serco Italia SPA, 2020). The results are exported in *.csv format and are visualized 

and further analysed in RStudio. 
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Figure 13: PSI workflow for processing Sentinel-1 images with SNAP, SNAP2StaMPS and StaMPS (based on 
Mancini et al.(2021)). 
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2.3.2 Small Baseline Subset Workflow 
The ASF offers On-Demand processing of Sentinel-1 datasets to generate InSAR products 

directly in the Data Search – Vertex portal. ASF uses cloud computing to efficiently 

calculate the data and afterwards enable the download in a short time period after 

submitting. For this method the SBAS interface has been used, which is designed to 

compile a series of InSAR pairs that cover a certain time period. After importing the AOI 

shapefile into the search tool, the filters are set to SLC file type and IW beam mode. The 

SBAS criteria filters include options to refine the result list of interferogram pairs. The first 

one is the overlap threshold. It can be a quick and easy way to remove low-value pairs 

from the time series. The filter is not applied in this study as each orbit track is analysed 

separately and within one track there is sufficient overlap, and the AOI is always fully 

covered. However, there is one exception in 2017 on the middle track in the image taken 

on the 1st of July, which has a data gap and is not covering the AOI, wherefor it got 

manually excluded.  The second SBAS criteria is the date filter, which restricts the pairs 

that fall within the specified date range. The applied time periods are listed in Table 1. 

Next, the baseline tolerances are adjusted. Thresholds for perpendicular (spatial) and 

temporal baseline are 300 m and 48 days respectively. The perpendicular baseline is the 

perpendicular distance between sensor locations during acquisitions in meters, whereas 

the temporal one is the time between acquisitions in days. To properly monitor surface 

deformation, the perpendicular baseline for acquisitions should be very small to maximize 

the coherence of the phase measurements. To determine topography, slightly different 

vantage points are required. Sensitivity to topography depends on the two baselines, the 

sensor wavelength, the distance between the satellite and the ground, and the sensor look 

angle. After manually checking the InSAR pairs they have been submitted for InSAR 

Gamma SLC processing with the MintPy option setting, as the SBAS analysis is performed 

using the MintPy software. That includes DEM, Look Vectors and Wrapped Phase. The 

Looks option is set to 10 x 2 as it defines the resolution and pixel spacing of the output 

products. The chosen option results in pixel spacing of 40 m, whereas the default 20 x 4 

reduces the spatial resolution to 80 m (Alaska Satellite Facility, 2023b (ASF), ASF 2023a). 

The InSAR time series analysis is conducted using the Miami InSAR time series software in 

Python (MintPy), which was developed by the Rosenstiel School of Marine and 
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Atmospheric Science (RSMAS) geodesy group at the University of Miami (Park and Hong, 

2020; Yunjun et al., 2019). It reads the stack of interferograms (here the ASF output) and 

the geometry files. It references them to the same coherent pixel (referent point), which 

has been placed by the algorithm randomly among pixels with high spatial coherence and 

a threshold of ≥ 0.85. Then it calculates the phase closure, which involves assessing the 

consistency of the phase measurements, and estimates the unwrapping errors. MintPy 

then inverts the (subset) network of interferograms into time series, calculates the 

temporal coherence to evaluate the quality of inversion, corrects DEM errors and in a final 

step estimates the surface velocity in LOS. Positive values represent motion towards the 

satellite, which would equal an uplift for pure vertical motion. The parameters for this 

process can be adapted but are used mostly in the default settings. In order to exclude 

outliers affected by decorrelation, pixels with a coherence lower than 0.5 are masked out. 

The pixel selection criterion is relaxed as not only the pixels that are coherent in all 

interferograms are used, but also pixels with fewer interferograms as long as a predefined 

number of other interferograms is available for each SAR acquisition (1 by default). This 

reduces the sensitivity of the network inversion result to the few very low coherent 

interferograms in a redundant network, giving robust and consistent spatial coverage (Park 

and Hong, 2020; Yunjun et al., 2019). The MintPy time series analysis results are saved in 

HDF5 format data and plotted and analysed further in RStudio (Figure 14).  
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Figure 14: Workflow diagram of the SBAS approach. Processes are in light blue, the used parameters and 
properties in light yellow brown. 
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2.3.3 Post-Processing in RStudio 
In this study, the post-processing stage was guided by a multifaceted analytical approach, 

using different statistical methods to explore the depth and breadth of the generated 

results and analysed data through PSI and SBAS methods. The specific post-processing 

steps undertaken in RStudio (v 4.1.2) are:  

1) First a comprehensive timeseries analysis is executed. The mean values for each 

timestep within the study period were computed for each ecosite shapefile under both 

methodologies. These mean values were utilized instead of median values due to their 

propensity to weigh “outliers” more heavily. Noteworthy in this context is, that 

statistical outliers not necessarily be erroneous or extraordinary data. For instance, the 

edge effects of the road, which is one focus of the study, can occur as a gradient 

regarding the distance from the road in hydrological disturbed peatlands. This effect is 

better accounted for by the mean.  Moreover, the discrepancies between median and 

mean values in this analysis proved to be marginal, as demonstrated in the focus on 

year 2021 plots that provide a detailed and focused lens on statistical parameters. The 

timeseries were plotted with a trend for each orbit track and statistical parameters 

such as the coefficient of determination (R²), the root mean square error (RMSE) as 

well as the p-value and τ derived from the Mann-Kendall trend test. The latter trend 

test is a robust non-parametric test utilized to identify statistically significant trends in 

timeseries. The significance level to accept a trend as statistically significant is chosen 

here as p < 0.05 (Hirsch et al., 1982; McLeod, 2011; Soltani et al., 2013).  

2) The second stage of analysis entailed the visualization of spatially distributed yearly 

velocity plots for each method, year and orbit track. The yearly velocity is the 

timeseries trend for each pixel, each PS respectively, in mm/year. The focus is on the 

West orbit track as its data is the only one available for all years of the study period.  

3) The snow free season of 2021 was emphasized as both methods deliver predominantly 

similar results, and all three orbit tracks are available. All orbits are merged into one 

timeseries with a single trend, with the statistical parameters mentioned above 

calculated accordingly. In addition, the differences between the upstream and 

downstream side are calculated and visualized. 
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4) Lastly, for the year 2021, the SBAS and PSI methods were plotted for a single orbit track 

displaying the data’s statistical variance and quality presented through boxplot 

diagrams. This is specifically done on an example to demonstrate the range and 

behaviour of the mean values plotted in the other timeseries plots. This approach is 

not used throughout the whole timeseries analysis to maintain intuitive interpretation 

and visualization, since the graphs would be too overloaded to compare the methods 

and results effectively in an adequate way. 

These analytical steps provide a robust approach to understanding the complex dynamics 

at play within the context of InSAR timeseries analysis. The statistical treatment of the 

data, combined with careful consideration of the relevant temporal and spatial 

parameters, provide insights that contribute to the overall understanding of the study’s 

objectives. 
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3. Results  
3.1 PSI and SBAS Timeseries Analysis 

Figure 15 illustrates the PSI and SBAS timeseries analysis of LOS movements in millimetre. 

Positive values are defined as an uplift in the direction towards the sensor and negative 

values as an increase of distance in LOS. It is important to note that the main part of the 

road construction, the adding of the mineral filled layer, happened during the end of 2018 

and the beginning of 2019. Consequently, the patterns observed in the years 2017 and 

2018, prior to this substantial disruption, are described briefly. Detailed graphs can be 

found in the Appendix.  

For the analysis of the timeseries, the mean values of each ecosite polygon are plotted 

over the snow free study period for each timestep. Each available orbit track is handled 

separately to compare the trends and measurements.  

In 2017 and 2018, when the road has not yet been completed, only West and Middle orbit 

tracks are available. The differences in results between PSI and SBAS outweigh the 

differences between various ecosites and downstream and upstream side by far. The SBAS 

displacement amplitude is approximately higher by the factor 2-5, varying between 

ecosites and years. No substantial differences between upstream and downstream sides 

can be detected in both the bog and the fen using both methods, which is expected since 

the mineral material had not yet been placed for the road construction. However, a 

relatively strong positive signal is detected on August 7th, 2017, in the middle orbit track 

in both methods in the bog and in the SBAS fen results, but not in the PSI fen timeseries. 

When comparing the pattern relatively instead of the absolute values, some similarities 

between the methods are observed, with most trends in 2017 pointing in similar 

directions. In 2018, the PSI trends are mostly contrary to the SBAS ones. In the PSI method 

the trends of middle orbit track are in the fens statistically significant (p-value < 0.05). Also, 

the R² is quite high with 0.9 (north-side) and 0.86 respectively. All other trends in both 

methods in 2017 and 2018 are not statistically significant (Table 4, Table 5).  

2019 is the first year with the completed road bisecting the peatlands. The amplitude 

remains approximately 3-4 times larger with SBAS compared to PSI. The trends in the bog 

ecosites are similar in both methods, and contrary in the fen. A peculiarity is the 21st of 

June as it represents a global maximum in the SBAS method whereas it is a minimum in 
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the PSI method, this is not simultaneously to a heavy rain event, but a total amount of 10 

mm is measured between 19th and 21st of June. In the middle orbit track results on July 

28th a minimum peak is detected in both methods for the bog, and for SBAS in the fen, 

where it is not detected by PSI. This minimum peak is followed by a strong uplift signal in 

the middle orbit for both PSI and SBAS. This coincides with a rain event in between this 

minimum and strong uplift signal. The PSI middle orbit trend in F1 (R² = 0.78, RMSE = 1.62) 

and SBAS west orbit track in B2 (R² = 0.33, RMSE = 3.99) are the only statistically significant 

trends (Table 4, Table 5). 

In 2020, the second year with the road effecting the hydrology, all three orbit tracks are 

available. The amplitude is 2-3 times larger with SBAS, but already closer as in the years 

before. Within each method, there are no obvious differences between upstream and 

downstream of the road. The SBAS trends are more neutral, closer to zero, in both bog 

and fen. PSI indicates an uplift in the bogs and a sinking tendency in west and middle orbits 

in the fen, whereas the east orbit indicates contrary an uplift in all four ecosites. The PSI 

East orbit tracks for B1, B2 and F2 are the statistically significant trends. East orbit track 

timeseries are quite similar in all the four ecosites and start later than the other tracks in 

June. Remarkable is July 17th as a peak to the surrounding data points in the timeseries is 

indicated in the fens and a minimum value in the bog. Around this date, there is a severe 

rain event which totals to over 70 mm in two days. After that date, both ecosites show 

smaller sinking data values and shift to a positive mean displacement during a constantly 

wet August until mid-September, where small and larger precipitation amounts occur. The 

end of September and the beginning of October are dry, and the uplift shown in the data 

decreases close to zero. The SBAS east orbit results show a similar pattern, but there are 

no significant trends. The 15th of June is a peculiar point in time, as it represents a global 

maximum in the PSI west orbit track and a minimum in the SBAS method. This is timewise 

a few days after a strong precipitation event amounting to approximately 60 mm 

(Figure 7).  

In 2021, with all three orbits available, amplitudes are similar, with SBAS being 1-2 times 

higher. The timeseries appears similar, especially when comparing the bog. Peaks are 

identical, but on the 29th of May in all ecosites, PSI shows an uplift maximum and SBAS a 

minimum. In the fen, PSI shows downward trends upstream and downstream, while SBAS 
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trends from various orbit tracks display contrary results. Statistically significant trends are 

PSI Middle and East track in the fens. No substantial differences are detected between 

upstream and downstream in either method.  

In 2022, with only West and East orbit track data available, the amplitudes disperse again 

to a factor of 5-8 times with SBAS being larger than PSI, but mainly in the West orbit. The 

East orbit track’s range is similar in both methods. The trends are contrary comparing the 

two methods. PSI indicates an uplift in the bog and contrary trends in the fen. SBAS shows 

sinking tendencies in all ecosites and orbits.  Statistically significant are the PSI trend in the 

West orbit, B2 and the SBAS East orbit, F2.  
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PSI B1 2019 upstream SBAS B1 2019 upstream 

  

PSI B2 2019 downstream SBAS B2 2019 downstream 
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PSI F1 2019 upstream SBAS F1 2019 upstream 

  

PSI F2 2019 downstream SBAS F2 2019 downstream 
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PSI B1 2020 upstream SBAS B1 2020 upstream 

 
  

PSI B2 2020 downstream SBAS B2 2020 downstream 
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PSI F1 2020 upstream SBAS F1 2020  upstream 

  

PSI F2 2020 downstream SBAS F2 2020 downstream 
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PSI B1 2021 upstream SBAS B1 2021 upstream 

  

PSI B2 2021 downstream SBAS B2 2021 downstream 
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PSI F1 2021 upstream SBAS F1 2021 upstream 

  

PSI F2 2021 downstream SBAS F2 2021 downstream 
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PSI B1 2022 upstream SBAS B1 2022 upstream 

  
PSI B2 2022 downstream SBAS B2 2022 downstream 
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PSI F1 2022 upstream SBAS F1 2022 upstream 

  

PSI F2 2022 downstream SBAS F2 2022 downstream 
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Figure 15: Timeseries plots for PSI and SBAS method results for the years 2019 – 2022. The plots are created for each Ecosite, respectively B1, B2 (for the Bog north and 
south of the road) and F1, F2 (for the Fen north and south of the road). The orbit tracks are represented by the colours green = West, yellow = Middle, and magenta = 
East, if the orbit track data is available in the specific year. On the x-axis the timeline is shown with explicit dates of the image acquisition. The y-axis shows the mean LOS 
displacement value of all valid pixels within a ecosite shapefile in mm.  

Table 4: Statistical parameters of PSI timeseries analysis, namely R², RMSE and retrieved from the Mann-Kendall timeseries trend test τ. If the τ result is statistically 
significant with p-value < 0.05 its cell is marked in light yellow. 

 

PSI B1 upstream B2 downstream F1 upstream F2 downstream 

YEAR ORBIT R² RMSE τ p-value R² RMSE τ p-value R² RMSE τ p-value R² RMSE τ p-value 

2017 West 0.63 0.56  0.47 0.26 0.05 1.13  0.06 1.0 0.95 1.92 -0.60 0.13 0.91 2.72 -0.60 0.13 

 Middle 0.38 1.39  0.47 0.07 0.01 1.33  0.16 0.60 0.90 1.88 -0.86 0.0006 0.86 2.18 -0.78 0.002 

2018 West 0.16 1.27  0.22 0.46 0.35 0.75  0.39 0.17 0.00 2.44  0.05 0.9 0.08 2.81  0.28 0.35 

 Middle 0.01 1.93 -0.11 0.72 0.01 2.38 -0.07 0.86 0.17 1.7  0.16 0.6 0.02 2.12 -0.24 0.37 

2019 West 0.02 2.07 -0.20 0.44 0.1 1.92 -0.27 0.27 0.27 2.19  0.38 0.12 0.00 1.88 -0.16 0.53 

 Middle 0.04 1.58 -0.13 0.64 0.27 1.00 -0.46 0.06 0.78 1.62  0.56 0.020 0.43 1.84  0.42 0.08 

2020 West 0.02 2.81  0.21 0.37 0.05 2.8  0.27 0.24 0.09 2.55 -0.15 0.5 0.11 2.40 -0.24 0.30 

 Middle 0.04 1.54 -0.24 0.35 0.01 1.36 -0.55 0.87 0.08 2.37 -0.16 0.5 0.37 2.18 -0.31 0.21 

 East 0.79 0.57  0.72 0.010 0.79 0.57  0.67 0.016 0.50 1.46  0.50 0.07 0.73 0.93  0.67 0.016 

2021 West 0.04 2.29 -0.08 0.75 0.01 2.38  0.10 0.66 0.16 2.25 -0.23 0.27 0.13 2.66 -0.21 0.32 

 Middle 0.00 1.75 -0.08 0.74 0.01 1.58 -0.10 0.66 0.77 0.95 -0.67 0.0006 0.82 0.88 -0.78 0.0001 

 East 0.00 1.65  0.03 0.91 0.01 1.33  0.12 0.58 0.73 1.27 -0.67 0.001 0.73 1.42 -0.67 0.001 

2022 West 0.26 1.82  0.42 0.1 0.38 1.72 0.50 0.049 0.01 1.7 -0.15 0.6 0.13 1.97 -0.29 0.28 

 East 0.39 0.95  0.57 0.063 0.4 1.21 0.50 0.10 0.05 2.14 0 1 0.08 2.10  0.07 0.90 
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Table 5: Statistical parameters of SBAS timeseries analysis, namely R², RMSE and retrieved from the Mann-Kendall timeseries trend test τ. If the τ result is statistically 
significant with p-value < 0.05 its cell is marked in light yellow. 

 

 

SBAS B1 upstream B2 downstream F1 upstream F2 downstream 

YEAR ORBIT R² RMSE τ p-value R² RMSE τ p-value R² RMSE τ p-value R² RMSE τ p-value 

2017 West 0.01 8.73 -0.14 0.76 0.09 8.55 0.14 0.76 0.04 7.22 -0.05 1 0.35 6.70 -0.24 0.55 

 Middle 0.08 7.76 0.3 0.19 0.11 8.04 0.3 0.19 0.01 7.28 0.06 0.84 0.00 6.68 -0.03 0.95 

2018 West 0.17 5.9 -0.15 0.54 0.15 5.39 -0.15 0.54 0.18 5.83 -0.12 0.63 0.16 5.97 -0.09 0.73 

 Middle 0.09 5.74 -0.23 0.3 0.09 5.95 -0.23 0.3 0.14 5.4 -0.21 0.36 0.25 5.81 -0.23 0.30 

2019 West 0.24 4 -0.25 0.23 0.33 3.99 -0.41 0.05 0.02 3.92 -0.1 0.66 0.06 3.44 -0.14 0.51 

 Middle 0 4.67 0.03 0.91 0.05 4.21 -0.17 0.44 0.00 4.46 -0.08 0.74 0.06 4.30 -0.21 0.32 

2020 West 0 8.31 -0.05 0.85 0.03 7.55 0.13 0.58 0.00 7.44 -0.05 0.85 0.06 7.41 0.15 0.50 

 Middle 0 6.98 -0.15 0.5 0.04 6.81 -0.21 0.36 0.01 6.43 -0.26 0.25 0.01 6.31 0.03 0.95 

 East 0.2 2.26 0.29 0.28 0.01 2.41 0.07 0.86 0.00 2.79 0.07 0.86 0.02 2.66 0.16 0.59 

2021 West 0 4.2 0.05 0.84 0 4.3 0.03 0.92 0.02 3.57 0.14 0.49 0.00 4.27 0.01 1.00 

 Middle 0.1 1.88 0.28 0.17 0.07 1.95 0.3 0.14 0.02 2.42 -0.01 1 0.03 2.98 -0.12 0.55 

 East 0.15 2.82 0.33 0.09 0.2 2.88 0.37 0.06 0.1 3.21 0.2 0.32 0.05 3.68 0.14 0.49 

2022 West 0.07 6.35 -0.2 0.44 0.3 6.98 -0.31 0.21 0.27 7.07 -0.38 0.12 0.27 7.30 -0.38 0.12 

 East 0.26 1.4 -0.22 0.47 0.37 1.47 -0.44 0.12 0.47 1.28 -0.44 0.12 0.49 1.24 -0.56 0.05 
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3.2  Focus on 2021 Data 
As in 2021 the two methods are peculiarly similar, it is chosen for a more detailed analysis.  

In addition, all three orbit tracks are available for examination. Furthermore, it is 

important to note that, 2021 had a particularly dry summer, despite the overall 

precipitation amount being close to average. The precipitation is distributed unequally 

though, with a relatively wet spring (May and June) and a dry summer (July, August, and 

September). This temporal pattern appears clearly in the variance and confidence intervals 

depicted in the 2021 timeseries boxplot graph (Figure 16). The three orbit tracks got 

merged in Figure 16 for ecosite B1 exemplarily (for B2, F1, F2 see Appendix). It becomes 

apparent, that in May and June the variability of the data is larger compared to the 

summer months. Mean (red crosses) and median (black horizontal line in IQ) values 

demonstrate a remarkable similarity across the entire dataset. The bottom and top border 

of the box in the plot corresponds to the 25th and 75th percentiles. The horizontal 

whiskers represent the mean ± standard deviation, while the length of the straight 

whiskers visualize the median ± 1.5 times the interquartile range (IQR). Any data points 

falling outside that value range are statistically classified as outliers. Noticeable is the peak 

on June 22nd coinciding with a four-day rain event with 5 mm to 10 mm precipitation per 

day. The next rain event with more than 5 mm precipitation per day occurs in the 

beginning of September, aligning with the next prominent peak in the data (observed on 

2021-09-02). Following this event, the variability of the data increases once again.  

 
Figure 16: Timeseries 2021 focus on statistical parameters. West, Middle, East orbit track timeseries data of 
the SBAS method are merged and displayed with boxplot diagrams. Median = black horizontal line in box, 
mean = red cross, mean ± standard deviation = horizontal whiskers, median ± 1.5 IQR = length of vertical 
whiskers, extent box = IQR, outlier = black dots, trend of this merged timeline = purple dashed line with 
confidence interval. 
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Comparing the four ecosites in the merged timeseries plot for the SBAS method, a similar 

pattern can be detected. The minima and maxima are shown through all datasets but with 

different amplitudes. None of the trends are statistically significant, but the p-values for 

B1, B2 and F1 are lower here in the merged orbits as compared to the single orbit track 

data. The trend in B1, B2 and F1 is similar and all positive, whereas F2, the downstream 

fen, is close to zero (Table 6). 

The intention behind generating the merged orbit data for all four ecosites is to facilitate 

a more comprehensive analysis of the disparities between the upstream and downstream 

side of both bog and fen. Consequently, the downstream side, represented by B2 and F2, 

is subtracted from the upstream side, B1 and F1. The resulting differences in 

displacements are visualized in Figure 17.  

Upon closer examination of the differences between the two bogs, it becomes apparent 

that they are consistently around zero or tend to be slightly more positive. This implies 

that the north/upstream side experiences higher elevation or equal movement in the 

cases where the difference values are zero. On the contrary the differences observed in 

the fen during spring exhibit negative values, indicating that the downstream side 

experiences relatively to the upstream side more positive or less depression of the surface 

elevation. This pattern changes in the summer months when the difference values become 

positive. This suggests that F1, located on the upstream side of the road, is characterized 

with more uplift or less depression values than F2 (downstream) in terms of surface 

displacement over time, demonstrating the influence of the road on the surface elevation 

of the adjacent peatlands.  
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Figure 17: Displacement differences over time. In green is the difference between shapefile mean values of 
B1 – B2, in blue for F1-F2. 

Table 6: Statistical parameters of the 2021 merged orbit track data timeseries, calculated with the SBAS 
method. τ and p-value are calculated with the Mann-Kendall test. 

SBAS merged R² RMSE τ p-value 

B1 0.03 3.3 0.18 0.08 

B2 0.04 3.4 0.17 0.09 

F1 0.013 3.2 0.14 0.18 

F2 0.0009 3.8 0.02 0.8 

 

3.3 Spatial Distribution of Yearly Velocity Rates of West Orbit Track Data 
Figure 18 illustrates the spatial distribution pattern of yearly LOS velocity rates in mm. It is 

important to note that, the main part of the road construction, the adding of the mineral 

filled layer, happened during the end of 2018 and the beginning of 2019. Consequently, 

the patterns observed in the years 2017 and 2018, prior to this substantial disruption, are 

described briefly. Detailed graphs can be found in the Appendix.  

For the analysis of velocity rates, SBAS and PSI were applied. However, due to the limited 

availability of accepted PS in the PSI dataset, the results are not as informative and spatial 

patterns less suitable for interpretation. Therefore, only the velocity rates of 2019 

obtained through the PSI method are presented to demonstrate the retrievable patterns. 

The differences between the patterns for all years are briefly discussed, focused on the 

west orbit track velocity as it is available through the whole study period. Additional 

graphs depicting the velocity rates from both methods over the whole study period can 

be found in the Appendix. 
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The SBAS velocity map of 2017 shows very pixeled patterns with contrary high values of 

uplift and sinking tendencies. PS are quite rare, so that no spatial patterns can be detected. 

In 2018 the SBAS velocity shows a large-scale sinking pattern with some hotspots and small 

contrary uplift pattern, e.g., east of the small east lake. The PS density is higher than in 

2017, especially in the bogs. It is remarkable, that there are no patterns detectable, that 

are clearly disrupted or bisected along the road, which still is missing the mineral filled 

layer, but already has been vegetation cleared.  

2019 SBAS velocity shows several patterns of interest, like the upwards movement around 

the two small lakes. The bog ecosites are mostly characterized by a downwards 

movement. Especially high downwards movements, around -20 mm/year to -60 mm/year, 

can be detected at the transition from bog to fen, where on the contrary in the F1 an uplift 

around +20 mm/year is indicated. This uplift solely happens on the north side and is stops 

at the road at the ineffective culvert EC12. At EC11 there are more uplift pixels on the 

south side vicinity, but exactly at the culvert there are a few sinking indicating pixels on 

the south and four upwards pointing pixels on the north side of the road. At EC8 the same 

pattern as EC12 can be spotted, even more definite. At EC 6 and EC7, east of the fen 

shapefiles, but still in fen landscape, there can be a more moderate downwards movement 

detected than on the south side. PSI has a higher PS density than in the years before. It 

allows to trace some of the large-scale patterns of the SBAS method, but no effects can be 

located at the culverts positions due to a lack of PS. In the bog, the density is high enough 

to portray a diverse image of velocities, dividing the bog shapefiles into half, with the east 

part showing a downwards and the west part showing an upwards movement for B1 and 

B2. In addition, the lifting pattern around the lakes is indicated. 

The measurements from 2020 are characterized by higher SBAS velocity values and more 

intense upwards movements as 2019. Again, the area around the lakes shows high 

upwards movements. Whereas the pattern at EC12 reverses compared to 2019, EC6 &7 

intensify their discrepancy between north and south side. EC11, a effective culvert shows 

no LOS velocity on the north side, but a strong upwards pattern on the south side, as well 

as EC12, which is a mostly ineffective culvert with big ponds on the north side, but it is 

flowing at high water levels. The PSI spatial pattern indicates no clear patterns in the 

vicinity of the road. 
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The measurements from 2021 indicate more moderate yearly velocity rates than the years 

before with values mostly between -20 mm/year to +20 mm/year. Around the lakes a small 

upwards tendency can be determined. The bogs show a mixed, but rather sinking 

tendency. F1 (upstream) shows rather an upwards pattern and F2 (downstream) a 

downward one. Peculiarly are the culverts EC12 and EC9. EC12 divides positive movement 

rates from negative ones on the south, as does EC9, which indicates a dysfunctionality. 

EC7 contrary shows a moderate sinking pattern on the north, and positive values on the 

south. 

2022 is characterized by more extreme velocity rates and smaller scale patterns. Around 

the lakes a downward movement is detected. B1 shows a mix of slight downwards and 

upwards pointing velocities, whereas B2 shows severe downward ones around 

- 60 mm/year, particularly in the vicinity of EC13. EC12 & EC9 indicate a similar pattern, 

but with more moderate rates around ± 20 mm/year. EC8 in contrast shows negative rates 

in F1 and positive to more moderate negative ones in F2. 

  



 
49 

 

2019 

 

 



 
50 

 

2020 

 

2021 

 



 
51 

 

2022 

 
Figure 18: Spatial distribution of yearly LOS rates in mm generated from West Orbit track data. The SBAS 
results are illustrated from 2019 till 2022. The PSI only for 2019. The Figure shows velocity rates from -100 
mm/year to +80 mm/year. The scale is on all graphs identical. Symbology: Blue = Water Mask, White 
shapefile = road, Ecosite Shapefile border = black, ineffective Culverts = red cross, effective culvert = blue 
cross. Spatial reference: NAD 1983 UTM Zone 12N. 
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4. Discussion  
In the context of this study, which focuses on assessing edge effects of the resource access 

road in Aspen within boreal peatlands in Alberta, the goals are to apply and compare the 

PSI and SBAS method for analysing surface deformation. The interpretation of the results 

is not trivial nor straightforward due to the complex nature of data. Neither graphical 

visualization of the timeseries data for various ecosites over time, nor their statistical 

parameters provide a robust interpretation. However, the results suggest that InSAR 

techniques have the potential to detect surface motions caused from hydrological changes 

in the peatlands. Especially the velocity plots exhibit small-scale variations that offer 

valuable information for interpretation and for drawing conclusions. It is essential to 

account for possible errors and inaccuracies to obtain an accurate picture of the quality of 

the methods. Nonetheless, despite those limits, careful and sensitive analysis allows for 

some conclusions to be drawn as described in the following: 

Timeseries Analysis:  

The statistical robustness of the timeseries data is limited. Neither the trends nor the 

timeseries itself provide sufficient information for a detailed and specific interpretation. 

Several factors contribute to this limitation:  

Firstly, the differences between the two methods mostly overshadow the distinctions 

among various ecosites and the downstream and upstream sides. Consequently, it 

becomes challenging to interpret patterns solely from one method, especially when it 

contradicts the other method. Those differences can be caused by methodological 

variations. For instance, the PSI method in this study has sparse but high-quality data in 

terms of coherence. On the other hand, the SBAS method accepts a lower coherence 

resulting in a larger dataset used for calculating the ecosites mean displacement. However, 

that takes low coherence pixels with unknown distributed scatter properties and a higher 

noise signal into account. Such noise can be caused by surface deformation or by errors or 

influences on the phase signal, like the atmospheric effects, artefacts, random noise, 

phase unwrapping errors, that have not been corrected during the processing. Those 

errors can still occur for high coherence pixels or PS, although the likelihood is reduced. 

The overall methodological goal is to extract the displacement from the phase information 

by separating it from those other influences (Crosetto et al., 2016). Furthermore, the 
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quality of a timeseries and its analysis results depend heavily on other factors. In this 

dataset relevant are: 

- Poor Spacing: this issue arises from unevenly spaced time series data and can affect 

the reliability. In general, all the orbits have timesteps with regular spacing of 12 

days, but sometimes data is missing, flawed or of poor quality and are not 

considered.  

- Resolution of the data: this refers to the granularity of the time series data. A time 

series with a high time resolution can capture more fluctuations, whereas a lower 

resolution may only capture broader trends. This especially could contribute to the 

variations among the orbit track data within one method and heavily influences 

the trend directions (Hyndman and Athanasopoulos, 2018).  

In essence, both of those factors are based on the number of data points, which is quite 

low with 7 to 15 for each orbit track. That is reflected in the statistical values and variability 

of the trends as well. 

Secondly, the spatial mean of each shapefile is calculated, which smooths the individual 

datapoints. This approach, compared to median values, tends to account more for 

extreme values that can arise due to edge effects, but potentially causing the loss of 

important details (Cryer and Chan, 2008). The analysis of velocity maps reveals some 

small-scale differences, but in the timeseries analysis no substantial disparities are 

detected in ecosite characteristics upstream or downstream. 

The third reason for divergent PSI and SBAS results can be attributed to signal attenuation 

through the presence of water during and after rainfall events. While the precise amount 

and moisture thresholds involve speculation, there are indications both in literature and 

the data that rain events introduce discrepancies and errors in the results (Danklmayer et 

al., 2009; Lu, 2007).  

In addition to the loss of coherence mentioned earlier, the primary factor limiting the 

accuracy of differential interferometry is the presence of unaccounted phase propagation 

delays in the atmosphere. These delays occur as the electromagnetic radiation passes the 

ionosphere, stratosphere, and troposphere, starting from an altitude of approximately 700 

km. The anomalies in delay arise from variations in the refractive index along the LOS. 
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These variations result from fluctuations in temperature, pressure, and water vapor 

content within the atmosphere between two radar acquisitions. Consequently, the phase 

information of the two signals is affected in distinct ways, leading to the generation of 

erroneous interferograms. Changes in the dielectric constant further modify the 

propagation velocity of radar energy, introducing a phase delay in the received signal 

(Danklmayer et al., 2009; Lu, 2007) 

The effect of changed dielectric properties is described in the results, with the data points 

representing maximums in one and contrary minimums in the other method coinciding 

with rain events. This observation suggests a strong link between coherence, scatterer 

properties and the presence of water. It may even be a strong contributing factor to the 

differing amplitudes observed between the methods, especially considering 2021 

experienced a particularly dry summer where the amplitudes are relatively similar. If this 

latter consideration is valid, even small amounts of moisture in the atmosphere and on 

the surface of scatterers could be sufficient to disperse the results of the methods. 

However, it is important to note, that the relationship between the influencing factors is 

complex, involving various interacting elements with undefined severity and unknown 

feedback mechanisms. As a result, making definitive statements about their precise 

impact is challenging. 

To validate the results, three orbit tracks were utilized, which offered varying looking 

angles. The overall outcome of this validation approach was unsuccessful, as rarely trends 

are statistically robust or their tendency within one method is contrary. Another limitation 

is, that not all three tracks are available for every year, and even when they are, their image 

acquisitions happened at different time steps and started at different dates. The WT holds 

potential as a validation option, its availability though is restricted to a too short period 

for now. It may proof beneficial in future studies, but for this study and its results it is 

limited. The only possibility to draw parallels between WT and the timeseries is 2022, 

where the west orbit track of the SBAS method roughly portraits the WT trajectory with a 

rise in May and June and a sinking trend for the rest of the year. The timeseries of the east 

orbit starts too late to cover the rise in spring.  
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To address some of the statistical properties, the in-depth focus on the year 2021 is 

discussed. This serves mainly two purposes: first, to enhance and discuss the data 

variation and its causes, and second, to explore a longer time series through merging the 

orbit data and thereby providing a more comprehensive dataset. 

Statistical Focus on 2021 

In the context of the observed dry conditions, particularly during the summer months of 

2021, it is conjectured that the results and amplitudes obtained from both methods 

showing great similarity. This arises from the discussed influence of moisture, 

encompassing changes in propagation and reflecting properties. Another supporting 

indication can be found in the PSI velocity map showing a higher overall coherence, as it 

contains more PS. Further evidence in favour of this thesis is derived from the in-depth 

focus on 2021 statistical analysis, which reveals compelling arguments. The rainfall events 

can be tracked through an increase in data variability. Specifically, the spring season 

exhibited a relatively wet period with high variability, whereas the subsequent dry 

summer showed reduced variability. Notably, a prominent peak in data variability and 

surface uplift coincided with a substantial rain event on June 22nd . Following this event, a 

period of low variability and surface stability persisted throughout the dry summer until 

early September, when variability and surface responses increased in conjunction with 

another rain event. It is important to note, that these observations were made in a bog, 

indicating that during dry and warm summers, a significant sinking tendency would not be 

expected due to the minimal influence of groundwater. 

The statistical analysis of the merged orbit timeseries indicates a higher level of robustness 

compared to individual orbits, although the observed differences are not statistically 

significant. The validity of merging data from three different orbit tracks needs 

consideration. On the positive side, the merged dataset demonstrates more robust 

statistical parameters, and the similarity in amplitude and trends among the orbits in 2021 

provides further support. It is important to acknowledge that each orbit is derived from 

distinct observations taken at different times and from varying looking angles, posing 

challenges in terms of validation for this approach. The differing looking angles introduce 

longer atmospheric transition paths, potentially influencing the properties of scatterers 

(Danklmayer et al., 2009). Nevertheless, all orbits observe the same in-situ phenomenon. 



 
56 

 

A detailed examination of the data reveals no substantial differences between the median 

and mean values, which indicate, that the choice on which one to use does not 

significantly impact the results. However, the IQR intervals and range of outlier values 

remain considerable, particularly during the spring season. This likely contributes to the 

varying trends and non-robust nature of the statistical analysis. 

The observed differences between the ecosites show a pattern that aligns with the 

ecological and physical properties of peatlands. The data quality and informative value 

already has been discussed, yet the physics-based logical conclusion here is so prominent 

that it must be emphasized. As bogs are ombrogenous systems, the influence of WT for 

the surface deformation is limited, especially compared to the groundwater connected 

fens. Consequently, the dry period in the summer months coinciding with sinking WT is 

expected to be less pronounced in the bogs compared to the fens. Taking this one step 

further, this implies that a hydrological barrier, such as the road, would induce fewer 

differences in a bisected bog than in a disrupted fen. This is primarily due to the 

hydrological properties of fens, which rely on the influence of groundwater, subsurface 

and surface flows. These dynamics can be observed in the patterns of the difference graph 

(Figure 17, Government of Alberta, 2015).  

Spatial Distribution of Yearly Velocity Rates of West Orbit Track 

The annual velocity spatial pattern of the west orbit track offers insights into small-scale 

surface movements. The visualizations provide a comprehensive depiction of variations 

along the road. A key indication, that these differences are attributed to the road 

intersecting the peatlands, rather than to randomness or road independent ecosystem 

parameters, is the inability to detect such patterns in the figures for 2017 and 2018. During 

those years, the road consisted only in the form of a vegetation cleared line and some peat 

compression caused by heavy machinery, without significant impact to disrupt horizontal 

hydrological flows. Another supporting factor is the correlation between the observed 

patterns and the position of semi-effective and ineffective culverts. In the immediate 

vicinity of several pixels around the culverts, clear effects and signals can be detected. 

A limitation is, that prior knowledge of culvert locations is required to ensure the proper 

detection of these patterns. Vice versa, once the culvert locations are known, rough 

monitoring can be designed to provide a general overview of their functionality. Especially 
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considering the road's relatively young age of only three years, it is expected that these 

effects will increase in size and magnitude over time (Willier et al., 2022). Additionally, the 

long-term efficiency of culverts tends to decrease due to blockages or shifting surfaces, 

making them less effective. While qualitative detection of increasing edge effects and the 

functionality of semi-effective culverts is possible, quantitative statements remain difficult 

to obtain. The resolution coverage is too broad to robustly assess these factors. The 

different levels of functionality are clearly demonstrated among the three culverts (EC11, 

EC7, EC6) shown in section 2.2.3. EC11 serves as an example of a well-working culvert, as 

indicated by its performance. Conversely, EC6 exhibits signs of improper functioning, 

which is demonstrated by both, the velocity plots, and the image. It is functioning at very 

high WT levels, but ultimately classified as a malfunctioning one. An interesting feature to 

note is the presence of a parallel culvert connecting the ponds of EC6 with the semi 

effective EC7 culvert. The parallel culvert is fully functional. In 2020 the discrepancy 

between upstream and downstream is increased in their vicinity, but in 2021 a contrasting 

pattern emerges, indicating a certain degree of water exchange. These estimates are 

based on the data but are consistent with the in-situ observations. This suggests that the 

employed method is capable of tracking in-situ surface deformations to a certain extent. 

The pattern in 2021 reveals a none to slightly sinking tendency in the bogs and contrary 

velocity trends in the fen with F1 experiencing an uplift and F2 a sinking movement. That 

aligns with the expected physical behaviour, as the bog is relatively isolated from 

groundwater influence, whereas it drives the fens surface movement dynamics. This 

observation highlights the impacts of a hydrological barriers. The effects are in the rough 

extend of the chosen shapefiles.  

In 2022, fewer timesteps are available and the precipitation effects through summer are 

more pronounced.  

It can be observed that the bog exhibits a higher number of PS throughout the study 

period, compared to the fen. The greater abundance of PS indicates a higher coherence 

over time and a variation of scatterers in that area. This disparity may be attributed to 

vegetation differences, like a higher tree density. Shrub scatterers are more susceptible to 

wind, than tree stems and are characterized by lower coherence values. Consequently, the 

SBAS method is more suitable for the spatial velocity plots of this study area in the 
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northern peatlands of Alberta. The PSI is preferred in areas with infrastructure or strong 

scatterers (Bradley et al., 2021). The timeseries approach where the spatial pattern of the 

ecosite shapefile is calculated to a mean value is still a valid approach, as the fewer PS have 

a higher quality. As it is hard to validate InSAR methods in general, a comparison between 

two approaches increases the robustness of statements and puts them in an appropriate 

context (Crosetto et al., 2016). 

Possible Errors of InSAR Analysis 

Several factors can introduce errors and affect the quality of results in the context of InSAR 

analysis. The impact of rain events and subsequent changes in moisture levels, as well as 

atmospheric variations on wave propagation have already been addressed. However, it is 

important to consider additional potential sources of errors that can influence the 

reliability of the outcomes. 

One crucial aspect, that determines the quality of InSAR results, is coherence. Coherence 

refers to the level of correlation or similarity between radar images acquired at different 

times. Various factors can affect coherence, including temporal, spatial, and volumetric 

decorrelation, ground changes, and the above-mentioned soil, surface & vegetation 

moisture. These factors have been identified in studies such as De Zan et al. (2015), 

Tampuu et al. (2020), and their influences on coherence should be taken into account 

when interpreting InSAR results. Temporal decorrelation refers to the decrease in 

coherence over time between image acquisitions at different points in time. It occurs due 

to environmental changes and is particularly prominent when there is a significant time 

gap between acquisitions. The spatial decorrelation is a result of viewing the targets from 

different positions. The volumetric decorrelation is related to loss of coherence caused by 

a structure change or volumetric properties. This addresses changes in the distribution of 

scatterers or reflective surfaces causing variations in the radar wave interactions. By 

considering these potential error sources, researchers can enhance the accuracy and 

credibility of their analyses (Crosetto et al., 2016; ESA, 2007; Liu et al., 2015; Tampuu et 

al., 2020). 

The short snow-free period is another obstacle in obtaining surface deformation in 

northern peatlands. Although snow-free doesn’t mean, that under snow cover no 

hydrological parameter changes are happening in the soil, but as long snow is present 
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surface movements are not traceable due to the different scattering characteristics of 

snow and ice.  

Additionally, there are methodological choices, that influence the results. The choice of 

the shapefiles’ extents is based on the ecosite distribution and aligned with the 

groundwater well placement. The quality of the timeseries results, compared to the small-

scale velocity map analysis, can prompt to question this choice, or at least initiate a 

discussion on whether a different approach based on data patterns, or an AI clustering 

would yield better outcomes.  On the other hand, the velocity map results show that the 

observed effects do not extent beyond the current boundaries of the polygons. This 

ensures that the timeseries adequately includes the phenomena. 
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5. Conclusion and Outlook 

The overarching aim of this research study is to characterize surface deformation within 

boreal peatlands through the InSAR techniques PSI and SBAS on the Aspen road. The 

complex nature of data presents a formidable challenge in terms of interpretation. 

Timeseries analysis, while promising, exhibits limited statistical robustness, with 

differences between the two methodologies outweighing distinctions among diverse 

ecosites and between the upstream and downstream sides. Factors such as inadequate 

spacing and data resolution contribute to this limitation.  

Despite these challenges, the in-depth examination of 2021, notably the disparities 

amongst ecosites and the velocity plots, provided valuable information for interpretation 

and drawing conclusions. This demonstrates the feasibility of extracting information about 

edge effects of energy development infrastructure, especially concerning mineral-filled 

access roads, using InSAR. Following the careful assessment of the outcomes, a prudent 

qualitative evaluation can be undertaken. However, for quantification of edge effects 

data’s statistical robustness falls short and too large amount of the results are 

contradicting each other.  

In the future, the forthcoming Sentinel 1C mission holds promise to restore superior time 

resolution, as it has been lacking since the breakdown of Sentinel 1B in December 2021. 

Other SAR systems and algorithms also show potential. One enduring issue of PSI 

algorithms remain that identical data processed via various methods produces different 

errors and therefore different results. This, coupled with the complexity of PSI results, 

makes a ground validation a complex task. It is crucial to comprehensively discuss the 

uncertainties of both approaches to effectively assess the results and their significance.  

Moreover, considering future InSAR applications, like a large-scale monitoring, there is 

potential in augmenting automation, accelerating quality control, and improving data 

processing capabilities, especially given the dimension of the AOS. This could prove 

valuable for monitoring not only the edge effects of access roads, but also wells, and 

extensive WT movements (Crosetto et al., 2016). 

The most value of information in this study add the SBAS velocity map. A key element is 

the capability of the approach to provide space-time characteristics with extended special 

coverage allowing to identify peculiar features (Lanari et al., 2007). The SBAS method is 
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designed to improve density and spatial distribution of survey points to return better 

measurements in vegetated areas, where the PS methods habitually struggle due to 

incoherence (Bradley et al., 2021).  

The Aspen area offers considerable opportunities for further exploration, given the 

relative recent establishing of the road in 2019 and the likely intensification of hydrological 

changes over time. Supplemental GW measurements and the precise weather station 

data, which are available recently, can provide important insights and support validation. 

On top, for this area a validation approach of the InSAR techniques and its results could 

be possible, as there are large-scale LiDAR mission data available. With a mission executed 

in 2017 and another in 2022, this could provide a high degree of precision for InSAR result 

validation, especially if multi-year trends in an ecosite can be detected. 

In summary, the methodological approach and pattern clusters observed in this study 

suggest a greater success in detecting large-area movements. Yet, continued monitoring 

of the road and temporal changes could yield promising results, especially in relation to 

the detection of culvert patterns. Despite the current ambiguity and absence of clear and 

concrete conclusions, the study’s findings remain valuable. They could serve to detect 

large-scale patterns more effectively and monitor the functional status of culverts, thereby 

developing into a potential source of information. These gained insights need to be utilized 

to guide planning and decision-making process, particularly in the design of new roads, 

positioning of culverts, and evaluation of their efficiency.   

Additional research topics to explore might include: 

• Conducting comparative studies of other access roads with already more 

pronounced edge effects. 

• Assessing large-scale WT movements and patterns. 

• Implementing AI or machine learning techniques for automated, large-scale data 

processing and pattern detection. 

• Building models to predict future changes based on existing data and trends, 

especially regarding a potential meteorological pattern change caused by climate 

change. 

• Assessing restoration of peatlands in terms of monitoring restoration of natural 

peat conditions, removing old roads, rewetting dry areas. 
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Appendix  
The Appendix A.1 to A.4 includes supplementary graphs and figures that provide visual 

support for the thesis, although they do not introduce significant additional information. 

A.5 contains the scripts in RStudio, Python and MATLAB, that have been used to plot the 

figures and calculate the results and statistical parameters. They are only included in the 

supplementary material added on the CD-ROM. They are excluded in the printed version 

due to sustainability reasons. 

A.1. Weather Station data  
The Kearl weather station data from 2017 and 2018:  
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The Aspen weather station data: 
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A.2 Statistical focus on 2021 
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A.3 Timeseries plots SBAS and PSI 2017 and 2018 
PSI B1 2017 SBAS B1 2017 

  

PSI B2 2017 SBAS B2 2017 

  



 
XIV 

 

PSI F1 2017 SBAS F1 2017 

  

PSI F2 2017 SBAS F2 2017 

  



 
XV 

 

PSI B1 2018 SBAS B1 2018 

  
PSI B2 2018 SBAS B2 2018 

 
 

 
 



 
XVI 

 

PSI F1 2018 SBAS F1 2018 

  
PSI F2 2018 SBAS F2 2018 

  



 
XVII 

 

A.4 SBAS and PSI additional Velocity Plots  
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A.5 Scripts of data analysis and visualization 

 

PSI Timeseries 

The statistical analysis is marked out with ‘#’, as you have to use the Date as.Date() instead 
of as.character() as it is used for plotting to show the timesteps completely. The parameter 
“v-do_” defines to use the dataset with estimated DEM and Orbit errors removed. Use “v” to 
use the product without removal of that error estimation. 

library(sf) 
library(dplyr) 
library(ggplot2) 
library(tidyr) 
library(Kendall) 
library(stats) 
library(forecast) 
 
setwd("../Documents/PSI/results") 
 
#Define Functions 
 
#loads csv file and returns sf_dataset, georeferenced in latlon 
load.stamps <- function(x){ 
  dat <- read.csv(paste0(getwd(), "/", x)) 
  dates.days <- as.vector(t(dat[1, 4:ncol(dat)])) 
  dates.date <- as.Date(dates.days, origin = "0000-01-01") 
  ref.points <- as.vector(t(dat[1, 1:2])) 
  dat <- dat[-1, ] 
  rownames(dat) <- seq_len(nrow(dat)) 
  ps.loc <- cbind( 
    uid = seq_len(nrow(dat)), 
    lon = dat[ , 1], 
    lat = dat[ , 2], 
    disp = dat[ , 3], 
    dat[ , 4:ncol(dat)] 
  ) 
   
  return(list(dates.days = dates.days, 
              dates.date=dates.date, 
              ref.points=ref.points, 
              ps.loc=ps.loc)) 
} 
 
clip_sf_data <- function(dataset, shapefile, crs_shapefile ="+init=epsg:26912"){ 
  shfile <- st_read(shapefile) %>%  
    st_zm(drop= TRUE, what="ZM") %>% 
    transform(crs = crs_shapefile) 
   
  dataset_sf <- dataset %>%  
    st_as_sf(coords = c("lon", "lat"), crs = "+proj=latlon +datum=WGS84") %>% 
    st_transform(crs=crs_shapefile) 
   
  st_intersection(dataset_sf, shfile) 
     
  return(dataset_sf) 
} 
 
#Execute loop with functions 
years <- 2017:2022 
file_list <- list.files(pattern = "*.csv") 
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shapefiles <- c("A1small.shp","A2small.shp","B1_FS_Fwc.shp","B2_FS_Fwc.shp") 
shfile <- shapefiles[4] 
ecosite <-strsplit(shfile, "\\.")[[1]][1] 
 
typ = "v-do_" 
 
for (year_to_filter in years){ 
  filtered_files_1year <- file_list[grep(paste0(typ,year_to_filter),file_list)] 
   
  for (csv_file in filtered_files_1year) { 
    file_name <- strsplit(csv_file, "_")[[1]] 
    orbit_name <- strsplit(file_name[3], "\\.")[[1]] 
    year_orbit <-paste(file_name[length(file_name)-1], orbit_name[1], sep="_") 
    df_name <- paste0("df",year_orbit) 
     
    ds <- load.stamps(csv_file) 
    ds_variable <- ds$ps.loc 
    colnames(ds_variable)<- c("uid","lon", "lat", "disp", as.character(ds$dates.date)) 
     
    ds_clipped <- clip_sf_data(ds_variable, shapefile = shfile) 
    df <- ds_clipped[, -(1:2)] 
     
    df_means <-df %>%  
      st_drop_geometry() %>%   
      as.data.frame() %>% 
      select_if(is.numeric) %>% 
      summarise_all(mean, na.rm =TRUE) %>% 
      .[, -c(ncol(.)-1, ncol(.))] 
 
    df_means_long <- df_means %>% 
      gather(key = "Date", value ="Mean") %>% 
      df_means_long$Date <- as.character(as.Date(substr(df_means_long$Date,2, 
nchar(df_means_long$Date)), format("%Y.%m.%d"))) 
     
    #colnames(df_means_long) <- sub("X","",colnames(df_means_long)) not working 
 
    assign(df_name, df_means_long, envir =.GlobalEnv) 
    print(df_name) 
  } 
} 
 
 
###### 
#Plot the results 
 
df_names <- ls()[sapply(ls(), function(x) is.data.frame(get(x)))] 
statistic_results <- list() 
 
i = 0 
for (year_to_filter in years){ 
   
  i = i+1 
  df_filtered <- df_names[grep(year_to_filter, df_names)] 
 
  #new version of creating df1, df2, df3 aín regards of the orbit name 
  orbit <- substr(df_filtered, start = nchar("df") +6, stop = nchar(df_filtered)) 
  data_frame_list_statistic <- list() 
  if("WestOrbit"  %in% orbit){ 
    df1 <- get(df_filtered[grepl("WestOrbit", orbit)]) 
    data_frame_list_statistic[[1]] <- df1 
  } 
  if("MiddleOrbit"%in% orbit){ 
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    df2 <- get(df_filtered[grepl("MiddleOrbit", orbit)]) 
    if(exists("df2")){ 
    data_frame_list_statistic[[2]] <- df2 
    } 
  } 
  if("EastOrbit"%in% orbit){ 
    df3 <- get(df_filtered[grepl("EastOrbit", orbit)]) 
    if(length(data_frame_list_statistic)==2){ 
    data_frame_list_statistic[[3]] <- df3 
    }else{ 
      data_frame_list_statistic[[2]] <- df3 
    } 
  } 
  #calculate statistics 
 #iteration_results <- list() 
 
   
 #for (j in 1:length(data_frame_list_statistic)){ 
   # df_statistic <- data_frame_list_statistic[[j]] 
   # lm_model <- lm(Mean ~ Date, data = df_statistic) 
     
   # r_squared <- summary(lm_model)$r.squared 
     
   # rmse <- sqrt(mean(lm_model$residuals^2)) 
     
   # mann_kendall <- Kendall(df_statistic$Mean, as.numeric(df_statistic$Date)) 
     
   # results <- list(R_squared = r_squared, RMSE = rmse, Mann_Kendall = mann_kendall, 
ecosite) 
     
  #  iteration_results[[j]] <- results 
 # } 
  #statistic_results[[i]] <- iteration_results 
   
  #Create base plot 
  p <- ggplot() + 
    #labs(title = "PSI - Mean displacement values Over Time for the orbits \n West <span 
style='color:#009E73;'>(green)</span>, Middle <span style='color:#E69F00;'> (yellow) 
</span> and East <span style'=color:#CC79A7;'> (magenta) </span>", 
    #     x = "Time", y = "Mean displacement Value (in mm)") + 
    labs(title = "PSI - Mean displacement values Over Time for the orbits \n West (green), 
Middle (yellow) and East (magenta)", 
         x = "Time", y = "Displacement [mm]") + 
    theme_minimal() + 
    theme(plot.title = element_text(hjust = 0.5), 
          axis.text.x = element_text(angle = 45, hjust = 1))+ 
    geom_hline(yintercept = 0, color = "black", linewidth = 0.7) 
   
   
  if (exists("df1")){ #check if df1 exists 
    #Add mean values and connecting lines for dataframe 1 
    p <- p + 
      geom_point(data = df1, aes(x=Date, y = Mean), shape = 4, size = 3, color = "#009E73") 
+ #alternative colorcode = "#009E73" "black" 
      geom_line(data = df1, aes(x = Date, y = Mean, group = 1), linetype = "solid", color = 
"#009E73") 
     
    # Add trendline for dataframe 1 
    p <- p +  
      geom_smooth(data= df1, aes(x = Date, y = Mean, group = 1), method = "lm", se= FALSE, 
linetype = "solid", color = "#009E73" ) 
  } 
   



 
XXIV 

 

  if (exists("df2")){ #check if df2 exists  
    #add mean values and connecting lines for dataframe 2 
    p <- p + 
      geom_point(data = df2, aes(x=Date, y = Mean), shape = 4, size = 3, color = "#E69F00") 
+  # alternative colorcode = "#E69F00" "#0072B2" 
      geom_line(data = df2, aes(x = Date, y = Mean, group = 1), linetype = "dashed", color 
= "#E69F00") 
     
    # Add trendline for dataframe 1 
    p <- p +  
      geom_smooth(data= df2, aes(x = Date, y = Mean, group = 1), method = "lm", se= FALSE, 
linetype = "dashed", color = "#E69F00"  ) 
  } 
  if (exists("df3")){ #check if df3 exists 
    #add mean values and connecting lines for dataframe 3 
    p <- p + 
      geom_point(data = df3, aes(x=Date, y = Mean), shape = 4, size = 3, color = "#CC79A7") 
+   # alternative colorcode = "CC79A7" "#56B4E9" 
      geom_line(data = df3, aes(x = Date, y = Mean, group = 1), linetype = "dotdash", color 
= "#CC79A7") 
     
    # Add trendline for dataframe 3 
    p <- p +  
      geom_smooth(data= df3, aes(x = Date, y = Mean, group = 1), method = "lm", se= FALSE, 
linetype = "dotdash", color = "#CC79A7" ) 
     
     
     
  } 
   
  print(p + theme(plot.title = ggtext::element_markdown())) #this is to render the HTML 
formatted title text (colored) 
  p 
  
  #save file 
  plot_filename <- paste("PSI_DOA_DisplacmentValues", year_to_filter, ecosite, ".jpeg", sep 
= "_") 
  if (file.exists(plot_filename)){ 
    file.remove(plot_filename) 
  } 
  ggsave(filename = plot_filename, plot = p, width = 10, height = 6, bg= "white") 
   
  #Open image 
  #viewer(plot_filename) 
   
  #print out a message 
  cat("Plot for year", year_to_filter, "saved as", plot_filename, "\n") 
   
  #Reset dataframes at the end of each iteration 
  rm(df1,df2,df3) 
} 
 
 
#print statistic 
for (i in 1:length(statistic_results)){ 
  for (j in 1:length(statistic_results[[i]])) { 
    print(paste("Iteration", i, "Calculation", j , "results:")) 
    print(statistic_results[[i]][[j]]) 
  } 
} 
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SBAS Timeseries 

The code is easy adjustable to plot the Median instead of the Mean. 

# Import libraries 
library(raster) 
library(rgdal) 
library(rhdf5) 
library(sf) 
library(ggplot2) 
library(htmltools) 
library(ggtext) 
 
# Set parameters 
parent_dir <- "Mintpy" 
years <- seq(2017,2022) 
shapefiles <- c("Mintpy/Mask_shapefiles/A1small.shp","Mintpy/Mask_shapefiles/A2small.shp", 
                
"Mintpy/Mask_shapefiles/B1_FS_Fwc.shp","Mintpy/Mask_shapefiles/B2_FS_Fwc.shp") 
 
# Prepare the shapefile of the ecosite 
shfile <- st_read(shapefiles[4]) 
ecosite <- shfile$Name 
 
# Function for reading hdf5 file and returning a dataframe 
reading_clipping_exporting_hdf5 <- function(filepath, shapefile, xmin = 488720, xmax = 
500800,  
                                            ymin =6310080 , ymax= 6336000, crs 
="+init=epsg:26912") { 
   
  h5_file <- H5Fopen(file_path,"H5F_ACC_RDONLY") 
  timeseries <- h5read(h5_file, "timeseries") 
  timeseries <- aperm(timeseries, c(2,1,3)) 
   
  date <- h5read(h5_file, "date") 
   
  rasters <- lapply(1:dim(timeseries)[3], function(i){ raster(timeseries[ , ,i]) }) 
  raster_stack <- stack(rasters) 
   
  extent(raster_stack) <- c(xmin, xmax, ymin , ymax) 
  projection(raster_stack) <- CRS(crs) 
   
  H5Fclose(h5_file) 
   
  shfile <- st_transform(shapefile, crs = crs(raster_stack)) 
  shfile <- st_zm(shfile, drop = TRUE, what = "ZM") 
   
  raster_cropped <- crop(raster_stack, extent(shfile)) 
  rstack_clipped <- mask(raster_cropped, shfile) 
   
  rstack_mean <- cellStats(rstack_clipped, mean) * 1000 
  rstack_median <- cellStats(rstack_clipped, median) * 1000 
  s_values <- cellStats(rstack_clipped, sd) * 1000 
   
  df <- data.frame(Date = date, Mean = rstack_mean, Median = rstack_median, 
Standarddeviation = s_values) 
   
  return(df) 
} 
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######### 
#preppare the shapefile of the ecosite 
 
shapefiles <- 
c("Mintpy/Mask_shapefiles/A1small.shp","Mintpy/Mask_shapefiles/A2small.shp","Mintpy/Mask_sh
apefiles/B1_FS_Fwc.shp","Mintpy/Mask_shapefiles/B2_FS_Fwc.shp") 
shfile <- st_read(shapefiles[4]) 
ecosite <-shfile$Name 
#shfile$geometry 
#plot(shfile["MaskID"]) 
 
 
######### 
#Create Loop for graphs  
 
#Loop through each folder  
for (year_to_filter in years){ 
  #filter for all folders containing the searched year in the name, loop it from 2017 till 
2022 
  filtered_dirs_1year <- 
filtered_dirs[grep(paste0("Mintpy_",year_to_filter),filtered_dirs)] 
   
  for (folder in filtered_dirs_1year) { 
    #construct the full path to the timeseries.h5 hdf5 file  
    file_path <- file.path(folder, "timeseries.h5") 
     
    #Check if the first file exists 
    folder_name <- strsplit(folder, "_")[1][[1]] 
    year_orbit <-paste(folder_name[length(folder_name)-1], 
folder_name[length(folder_name)], sep="_") 
    df_name <- paste0("df",year_orbit, collapse= "_") #collapse is like sep, but only 
inbetween and not in the end 
    df_variable <-reading_clipping_exporting_hdf5(filepath= file_path,shapefile= shfile) 
    df_variable_frame <- as.data.frame(df_variable) 
    #df_variable_frame$Date <- as.Date(df_variable_frame$Date, format = "%Y%m%d") 
    assign(df_name, df_variable_frame, envir =.GlobalEnv) 
    print(df_name) 
  } 
   
} 
 
 
######## 
#Plotting the results 
 
 
#get all the dataframes 
df_names <- ls()[sapply(ls(), function(x) is.data.frame(get(x)))] 
 
 
for (year_to_filter in years){ 
  df_filtered <- df_names[grep(year_to_filter, df_names)] 
  #old version of creating df1, df2 ,df3 
#  for (i in seq_along(df_filtered)){#anderes Criteria benötigt 
#    assign(paste0("df",i), get(df_filtered[i])) 
#  } 
   
  #new version of creating df1, df2, df3 aín regards of the orbit name 
  orbit <- substr(df_filtered, start = nchar("df") +6, stop = nchar(df_filtered)) 
  if("WestOrbit"  %in% orbit){ 
    df1 <- get(df_filtered[grepl("WestOrbit", orbit)]) 
  } 



 
XXVII 

 

  if("MiddleOrbit"%in% orbit){ 
    df2 <- get(df_filtered[grepl("MiddleOrbit", orbit)]) 
  } 
  if("EastOrbit"%in% orbit){ 
    df3 <- get(df_filtered[grepl("EastOrbit", orbit)]) 
  } 
 
   
 
  #Create base plot 
  p <- ggplot() + 
    labs(title = "SBAS - Mean displacement values Over Time for the orbits \n West (green), 
Middle (yellow) and East (magenta)", 
           x = "Time", y = "Displacement [mm]") + 
    theme_minimal() + 
    theme(plot.title = element_text(hjust = 0.5), 
          axis.text.x = element_text(angle = 45, hjust = 1))+ 
    geom_hline(yintercept = 0, linewidth = 0.7, color = "black") 
 
   
  if (exists("df1")){ #check if df1 exists 
    #Add mean values and connecting lines for dataframe 1 
    p <- p + 
      geom_point(data = df1, aes(x=Date, y = Mean), shape = 4, size = 3, color = "#009E73") 
+ #alternative colorcode = "#009E73" "black" 
      geom_line(data = df1, aes(x = Date, y = Mean, group = 1), linetype = "solid", color = 
"#009E73") 
     
    # Add trendline for dataframe 1 
    p <- p +  
      geom_smooth(data= df1, aes(x = Date, y = Mean, group = 1), method = "lm", se= FALSE, 
linetype = "solid", color = "#009E73" ) 
  } 
   
  if (exists("df2")){ #check if df2 exists  
   #add mean values and connecting lines for dataframe 2 
   p <- p + 
     geom_point(data = df2, aes(x=Date, y = Mean), shape = 4, size = 3, color = "#E69F00") 
+  # alternative colorcode = "#E69F00" "#0072B2" 
     geom_line(data = df2, aes(x = Date, y = Mean, group = 1), linetype = "dashed", color = 
"#E69F00") 
    
    # Add trendline for dataframe 1 
   p <- p +  
     geom_smooth(data= df2, aes(x = Date, y = Mean, group = 1), method = "lm", se= FALSE, 
linetype = "dashed", color = "#E69F00"  ) 
  } 
  if (exists("df3")){ #check if df3 exists 
    #add mean values and connecting lines for dataframe 3 
    p <- p + 
      geom_point(data = df3, aes(x=Date, y = Mean), shape = 4, size = 3, color = "#CC79A7") 
+   # alternative colorcode = "CC79A7" "#56B4E9" 
      geom_line(data = df3, aes(x = Date, y = Mean, group = 1), linetype = "dotdash", color 
= "#CC79A7") 
     
    # Add trendline for dataframe 3 
    p <- p +  
      geom_smooth(data= df3, aes(x = Date, y = Mean, group = 1), method = "lm", se= FALSE, 
linetype = "dotdash", color = "#CC79A7" ) 
   
  print(p + theme(plot.title = ggtext::element_markdown())) #this is to render the HTML 
formatted title text (colored) 
  p 



 
XXVIII 

 

   
  #save file 
  plot_filename <- paste("SBAS_DisplacmentValues", year_to_filter, ecosite, ".jpeg", sep = 
"_") 
  if (file.exists(plot_filename)){ 
    file.remove(plot_filename) 
  } 
  ggsave(filename = plot_filename, plot = p, width = 10, height = 6, bg= "white") 
   
  #print out a message 
  cat("Plot for year", year_to_filter, "saved as", plot_filename, "\n") 
   
  #Reset dataframes at the end of each iteration 
  rm(df1,df2,df3) 
  } 
} 
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PSI Velocity 
library(sf) 
library(sp) 
library(raster) 
library(rgdal) 
library(viridis) 
library(scales) 
 
#setwd 
setwd("..") 
setwd("Documents") 
setwd("PSI/results") 
wd<- getwd() 
 
 
 
load.stamps <- function(x){ 
  dat <- read.csv(paste(wd,"/", x, sep = "")) 
  dates.days <- as.vector(t(dat[1, 4:ncol(dat)])) 
  dates.date <- as.Date(dates.days, origin = "0000-01-01") 
  ref.points <- as.vector(t(dat[1, 1:2])) 
  dat <- dat[c(2:nrow(dat)), ] 
  rownames(dat) <- seq(length = nrow(dat)) 
  ps.loc <- cbind(uid = 1:nrow(dat), 
                  lon = dat[ , 1], 
                  lat = dat[ , 2], 
                  disp = dat[ , 3], 
                  dat[ , 4:ncol(dat)]) 
   
  #return(dat) 
  return(list(dates.days = dates.days, 
              dates.date=dates.date, 
              ref.points=ref.points, 
              ps.loc=ps.loc)) 
} 
 
clip_sf_data <- function(dataset,shapefile, crs_shapefile ="+init=epsg:26912"){ 
  #load shapefile 
  #shfile <- st_read(shapefile) 
  shfile = shapefile 
  crs <- crs_shapefile 
  #crs <- CRS("+proj=utm +zone=12 +datum=WGS84") 
   
  #Drop Z and transform shapefile   
  shfile= st_zm(shfile, drop= TRUE, what="ZM") 
  shfile <-transform(shfile, crs = crs) 
   
  dataset_sf <-st_as_sf(dataset, coords = c("lon", "lat"), crs = "+proj=latlon 
+datum=WGS84") 
  dataset_sf_utm <- st_transform(dataset_sf, crs=crs) 
   
  #extract points within polygon  
   
  dataset_sf_utm_clipped <- st_intersection(dataset_sf_utm, shfile) 
   
  return(dataset_sf_utm_clipped) 
} 
 
#######  
AoI = st_read("AoI_ASPEN_small.shp") 
shfileB1 <- st_read("A1small.shp") 
shfileB2 <- st_read("A2small.shp") 
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shfileF1 <- st_read("B1_FS_Fwc.shp") 
shfileF2 <- st_read("B2_FS_Fwc.shp") 
roadmask <- st_read("RoadMask.shp") 
watermask1 <- st_read("WaterMask1.shp") 
watermask2 <- st_read("WaterMask2.shp") 
watermask3 <- st_read("WaterMask3.shp") 
AoI= st_zm(AoI, drop= TRUE, what="ZM") 
 
#clip roadmask 
roadmask <- st_intersection(roadmask,AoI) 
ineff_description = c("ineffective") 
eff_description <-c("effective") 
semi_description <- c("semi-effective") 
cul_new <- st_read("effective Cul.shp") 
cul_new <- st_transform(cul_new, crs = 26912) 
 
ineff_cul_new <- subset(cul_new, cul_new$Descript %in% ineff_description) 
eff_cul_new <- subset(cul_new, cul_new$Descript %in% eff_description) 
eff_cul_new <- subset(eff_cul_new, (!eff_cul_new$Name %in% c("EC2","EC3","EC1"))) 
semi_eff <- subset(cul_new, cul_new$Descript %in% semi_description) 
####### 
 
#automated run  
 
file_list <- list.files(pattern = "*.csv") 
years <- seq(2017,2022) 
 
#typ = "v_"   
typ = "v-do_" 
 
color_min <- -80 
color_max <- 60 
 
for (year_to_filter in years){ 
  #filter for all folders containing the searched year in the name, loop it from 2017 till 
2022 
  filtered_files_1year <- file_list[grep(paste0(typ,year_to_filter),file_list)] 
   
  for (csv_file in filtered_files_1year) { 
    #Create uniform df names based on year and orbit (exracted from csv_file name) 
    file_name <- strsplit(csv_file, "_")[[1]] 
    orbit_name <- strsplit(file_name[3], "\\.")[[1]] 
    year_orbit <-paste(file_name[length(file_name)-1], orbit_name[1], sep="_") 
    df_name <- paste0("df",year_orbit, collapse= "_") #collapse is like sep, but only 
inbetween and not in the end 
     
    ds <- load.stamps(csv_file) 
    ds_variable <- ds$ps.loc 
    colnames(ds_variable)<- c("uid","lon", "lat", "disp", as.character(ds$dates.date)) 
     
    #extract relevant variables 
    ds_relevant <- ds_variable[c("disp", "lat", "lon")] 
     
    # perform clipping by AoI 
    clipped_data <- clip_sf_data(ds_relevant, AoI) 
    h <- ggplot(data= clipped_data)+ 
      geom_histogram(aes(x = disp), bins = 80, fill = "lightblue", color = "black")+ 
      scale_x_continuous(breaks = seq(-80,50, by =10))+ 
      labs(x= "Displacement", y = "Frequency", title = " Histogramm of Displacement")+ 
      theme_bw() 
     
    filenamehisto <- paste0("PSI_hist_",year_orbit,".png") 
    ggsave(filename = filenamehisto, plot = h, width = 21, height = 10, units = "cm", dpi = 
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300)  
     
    #colors <- RColorBrewer::brewer.pal(10, "BrBG") 
    #scale <- scales::rescale(c(-80,0,20,40)) 
    p <- ggplot(data = clipped_data)+ 
      geom_sf(data= clipped_data, aes(color=disp), size = 0.2)+ 
      #scale_color_viridis_c(name = "Displacement", option = "D", limits = c(color_min, 
color_max))+ Alternative 
      scale_color_gradientn(colors= RColorBrewer::brewer.pal(10,"BrBG"), limits=c(-40,40), 
breaks = seq(-40,40,by = 10), na.value = "transparent")+ 
      geom_sf(data= roadmask, fill = "gray")+ 
      geom_sf(data= watermask1, fill= "darkblue")+ 
      geom_sf(data= watermask2, fill= "darkblue")+ 
      geom_sf(data= watermask3, fill= "darkblue")+ 
      geom_sf(data= shfileB1, fill= "transparent", color = "black")+ 
      geom_sf(data= shfileB2, fill= "transparent", color = "black")+ 
      geom_sf(data= shfileF1, fill= "transparent", color = "black")+ 
      geom_sf(data= shfileF2, fill= "transparent", color = "black")+ 
      geom_sf(data= ineff_cul_new, shape = 4, color= "red", size = 2)+ 
      geom_sf(data= eff_cul_new, shape =4, color = "blue", size = 2)+ 
      geom_sf(data= semi_eff, shape = 4, color = "purple", size = 2)+ 
       
      labs(fill = "Displacment", title = paste0("PSI velocity (mm/year) - ", gsub("_"," ", 
gsub("([a-z])([A-Z])", "\\1 \\2",year_orbit))))+ 
       
      theme_bw() + 
      theme(plot.title = element_text(size = 10),legend.position = "right", legend.title = 
element_text("Displacement", size = 8, vjust = 0.2) ,plot.margin = margin(35,20,20,20), 
axis.text.x = element_text(angle = 45, hjust =1)) 
     
    filenamevelo <- paste0("PSI_velo_",year_orbit,".png") 
    ggsave(filename=filenamevelo, plot = p, width = 21, height = 10, units = "cm", dpi = 
300)  
  } 
} 
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SBAS Velocity 
###import libraries 
 
library(raster) 
library(rgdal) 
library(rhdf5) 
library(sf) 
library(ggplot2) 
library(reshape2) 
library(data.table) 
library(scales) 
library(RColorBrewer) 
 
 
########## 
#set wkdir  
wkdir <- getwd() 
wkdir 
#setwd("Documents") 
 
#specify the parent direcory containing the folders 
parent_dir <- "Mintpy" 
 
#Get a list of all directories within the parent directory 
all_dirs <-list.dirs(parent_dir, recursive = FALSE)  #recursive = FALSE, to not go into 
subdirectories 
 
#Filter the list of expressions based on the criteria using regular expressions 
filtered_dirs <- all_dirs[grep("^Mintpy/Mintpy", all_dirs)] 
 
############ 
years <- seq(2017,2022) 
AoI_filepath = "Mintpy/Mask_shapefiles/AoI_ASPEN_small.shp" 
 
shfileB1 <- st_read("Mintpy/Mask_shapefiles/A1small.shp") 
shfileB2 <- st_read("Mintpy/Mask_shapefiles/A2small.shp") 
shfileF1 <- st_read("Mintpy/Mask_shapefiles/B1_FS_Fwc.shp") 
shfileF2 <- st_read("Mintpy/Mask_shapefiles/B2_FS_Fwc.shp") 
roadmask <- st_read("Mintpy/Mask_shapefiles/RoadMask.shp") 
watermask1 <- st_read("Mintpy/Mask_shapefiles/WaterMask1.shp") 
watermask2 <- st_read("Mintpy/Mask_shapefiles/WaterMask2.shp") 
watermask3 <- st_read("Mintpy/Mask_shapefiles/WaterMask3.shp") 
 
#read Well GPS points 
ineff_description = c("ineffective") 
eff_description <-c("effective") 
semi_description <- c("semi-effective") 
cul_new <- st_read("effective Cul.shp") 
cul_new <- st_transform(cul_new, crs = 32612) 
 
ineff_cul_new <- subset(cul_new, cul_new$Descript %in% ineff_description) 
eff_cul_new <- subset(cul_new, cul_new$Descript %in% eff_description) 
semi_eff <- subset(cul_new, cul_new$Descript %in% semi_description) 
 
#Create Loop for graphs  
read_aperm_converttoraster_georeference_clippAoI_hdf5 <- function(filepath, xmin = 488720, 
xmax = 500800, ymin =6310080 , ymax= 6336000, crs = "+init=epsg:32612", 
AoI_filepath="Mintpy/Mask_shapefiles/AoI_ASPEN_small.shp", Velocity = TRUE){ 
  h5_file <-H5Fopen(filepath,"H5F_ACC_RDONLY") 
  #Read the velocity dataset and permutate 
  velocity <- h5read(h5_file, "velocity") 
  velocity <- aperm(velocity,c(2,1)) 
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  velocityStd <- h5read(h5_file, "velocityStd") 
  velocityStd <- aperm(velocityStd,c(2,1)) 
   
   
  # close HDF% file 
  H5Fclose(h5_file) 
   
  ######## 
  #convert matrix to a raster 
  velocity_ra <- raster(velocity) 
  velocityStd_ra <- raster(velocityStd) 
   
   
  ###### 
  #georeference raster 
  extent(velocity_ra) <- c(xmin = xmin, xmax = xmax, ymin =ymin, ymax= ymax) 
  extent(velocityStd_ra) <- c(xmin = xmin, xmax = xmax, ymin = ymin , ymax= ymax) 
  projection(velocity_ra) <- CRS(crs) 
  projection(velocityStd_ra) <- CRS(crs) 
   
   
  AoI<- st_read(AoI_filepath) 
  AoI= st_zm(AoI, drop= TRUE, what="ZM") 
   
  #Crop Raster 
  velocity_ra_aoi <- crop(velocity_ra, AoI) 
  velocity_ra_aoi <- mask(velocity_ra_aoi, AoI) 
   
  velocityStd_ra_aoi <- crop(velocityStd_ra, AoI) 
  velocityStd_ra_aoi <- mask(velocityStd_ra_aoi, AoI) 
   
  #chanfe unit to millimeters instead of meters 
  velocity_ra_aoi <- velocity_ra_aoi * 1000 
  velocityStd_ra_aoi <- velocityStd_ra_aoi * 1000 
   
  #return results 
  # if (velocity){ 
  #  return(velocity_ra_aoi) 
  #} else{ 
  #    return(velocityStd_ra_aoi)} 
  return(velocity_ra_aoi) 
 
} 
 
#set colorrange 
breaks <- c(-100, -80,-60, -40, -20, -0.1, 0, 0.1, 20, 40, 60, 80) 
num_col <- 11 
palette <-brewer.pal(num_col, "BrBG") 
#palette <- viridis(num_col, option = "D", begin = 0, end = 1) 
 
#Loop through each folder  
for (year_to_filter in years){ 
  #filter for all folders containing the searched year in the name, loop it from 2017 till 
2022 
  filtered_dirs_1year <- 
filtered_dirs[grep(paste0("Mintpy_",year_to_filter),filtered_dirs)] 
   
  for (folder in filtered_dirs_1year) { 
    #construct the full path to the velocity.h5 hdf5 file  
    file_path <- file.path(folder, "velocity.h5") 
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    #Check if the first file exists 
    folder_name <- strsplit(folder, "_")[1][[1]] 
    year_orbit <-paste(folder_name[length(folder_name)-1], 
folder_name[length(folder_name)], sep="_") 
    ra_name <- paste0("ra",year_orbit, collapse= "_") #collapse is like sep, but only 
inbetween and not in the end 
    ra_velo <-read_aperm_converttoraster_georeference_clippAoI_hdf5(filepath= file_path) 
    assign(ra_name, ra_velo, envir =.GlobalEnv) 
    print(ra_name) 
     
    main= paste("SBAS Velocity (in mm/year) -", gsub("_", " ", gsub("([a-z])([A-Z])", "\\1 
\\2",year_orbit))) 
     
    filename <- paste0("velocity_Plot_", ra_name, ".png") 
    storage_path <- paste0(wkdir, "/", filename) 
    png(storage_path) 
     
    #Plot 
    par(mar=c(5,5,5,4),xpd= TRUE) # set the plot margins (in inches) to 5 an all sides #xpd 
= boolean, clipping to plot or clipping to figure region 
    #plot 
     
    plot(ra_velo, legend = T, main =main, legend, breaks = breaks, col = palette) 
    grid(nx= NULL, ny = NULL, col= "black",lty="dotted") #nx and ny control the number of 
gridlines, NULL sets to defualt value which depends on plot size 
    plot(shfileB1$geometry, add=TRUE) #, border= "red") 
    plot(shfileB2$geometry, add=TRUE) #, border= "red") 
    plot(shfileF1$geometry, add=TRUE) #, border= "red") 
    plot(shfileF2$geometry, add=TRUE) #, border= "red") 
    plot(roadmask$geometry, add=TRUE, col = "white") 
    plot(watermask1$geometry, add= TRUE, col = "darkblue", density=10, fill = TRUE) #col = 
"darkblue", 
    plot(watermask2$geometry, add= TRUE, col = "darkblue", density = 0.5) 
    plot(watermask3$geometry, add= TRUE, col = "darkblue", density = 0.3) 
     
    plot(eff_cul_new$geometry, pch =3, col = "blue", lwd =2,add=TRUE) 
    plot(ineff_cul_new$geometry, pch = 3, col ="red", lwd=2,add=TRUE) 
    plot(semi_eff$geometry, pch = 3, col ="purple",lwd = 2, add=TRUE) 
    #plot(impound$geometry, pch ="+", col ="purple", add=TRUE) 
    #points(effective_cul$Longitude,effective_cul$Latitude, pch = 3, cex =2, col = "red") 
     
    #first legend 
    legend_text <-c("Water", "Road", "Ecosites", "ineff culvert", "eff culverts", "semi eff 
cuverts") 
    legend_colors <- c("darkblue", "white", "black", "red","blue", "purple") 
    #legend_symbols <- c(16,16,16,4,4) 
 
    legend("topright",inset=c(-0.34,-0.02),xpd= TRUE,legend = legend_text, title="Legend", 
col = legend_colors, pch= rep(c(16,4), times= c(3,3)), lwd = 0.5, bty="o", bg="lightgray", 
x.intersp =0.9, y.intersp = 0.9, cex = 0.8 ) 
     
    dev.off() 
  } 
} 
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Focus 2021 
###import libraries 
 
library(raster) 
library(rgdal) 
library(rhdf5) 
library(sf) 
library(ggplot2) 
library(htmltools) 
library(ggtext) 
library(dplyr) 
library(tidyr) 
 
########## 
#set wkdir  
getwd() 
#make sure wd = "/Documents", otherwise use setwd("Documents"), or remove one level with 
setwd("..") 
#specify the parent direcory containing the folders 
parent_dir <- "Mintpy" 
 
#Get a list of all directories within the parent directory 
all_dirs <-list.dirs(parent_dir, recursive = FALSE)  #recursive = FALSE, to not go into 
subdirectories 
 
#Filter the list of expressions based on the criteria using regular expressions 
filtered_dirs <- all_dirs[grep("^Mintpy/Mintpy", all_dirs)] 
 
#filter for the year in the name 
#years <- seq(2017,2022) 
years = 2021 
df_list <- list() 
######## 
# create a function for the processes between reading hdf5 file and returning a dataframe 
(Date,Mean Values, Median Values) #changed epsg to 26912 from 32612(asia) 
reading_clipping_exporting_hdf5 <- function(filepath, shapefile, xmin = 488720, xmax = 
500800, ymin =6310080 , ymax= 6336000, crs ="+init=epsg:26912" ){ 
  "this function reads a hdf5 file 
   take the timeseries data and stack it to a new raster layer 
   clipps it by a shapefile (which has to be georeferenced first) 
   and returns a dataframe containing the date as variablenames and the non NA values as 
observables" 
   
  #Load the raster to clip  
  #Data is in hdf5 files, need to create rasters from it and stack them 
   
  #Read the HDF5 file 
  h5_file <-H5Fopen(file_path,"H5F_ACC_RDONLY") 
   
  #Read the timeseries dataset 
  timeseries <- h5read(h5_file, "timeseries") 
   
  #change dimensions of array 
  timeseries_permuted <- aperm(timeseries,c(2,1,3)) 
  timeseries <- timeseries_permuted 
   
  date <- h5read(h5_file, "date") 
   
  #convert the timeseries data to a list of rasters 
  rasters <- lapply(1:dim(timeseries)[3],function(i){ 
    raster(timeseries[ , ,i]) 
  }) 



 
XXXVI 

 

   
  #convert the list to a rasterstack object 
  raster_stack <-stack(rasters) 
   
  #set the extent and projection of the rasterstack object 
  extent(raster_stack) <- c(xmin, xmax, ymin , ymax) 
  projection(raster_stack) <- CRS(crs) 
  plot(raster_stack[[1]]) 
  # close HDF% file 
  H5Fclose(h5_file) 
   
  #georeference shapefile 
  shfile <- st_transform(shapefile, crs = crs(raster_stack)) 
  #Make xy shape, drop Z and M 
  shfile= st_zm(shfile, drop= TRUE, what="ZM") 
   
  #crop the raster to the extent of the shapefile 
  raster_cropped <- crop(raster_stack, extent(shfile)) 
   
  #clipp the raster stack with the shapefile raster 
  rstack_clipped <- mask(raster_cropped, shfile)  
   
 
  date <- as.Date(date, format= "%Y%m%d") 
  #values_df <- data.frame(matrix(ncol = nlayers(rstack_clipped), nrow = 
prod(dim(rstack_clipped[[1]])))) 
  values_df <-list() 
  for (element in 1:nlayers(rstack_clipped)){ 
     
    layer_values <- as.data.frame(rstack_clipped[[element]]) 
     
    layer_values <- na.omit(layer_values, drop = FALSE) 
     
    #name the column with corresponding date 
    #date <- format(date, "%Y-%m-%d") 
    colnames(layer_values) <- date[element] 
     
    #add the values to the dataframe as a new column 
    values_df[[element]] <- layer_values 
     
     
  } 
  #merge data.frames in one data.frame 
  merged_df <- do.call(cbind, values_df) 
   
 
  return(merged_df) 
} 
 
 
######### 
#preppare the shapefile of the ecosite 
 
shapefiles <- 
c("Mintpy/Mask_shapefiles/A1small.shp","Mintpy/Mask_shapefiles/A2small.shp","Mintpy/Mask_sh
apefiles/B1_FS_Fwc.shp","Mintpy/Mask_shapefiles/B2_FS_Fwc.shp") 
xx <- 1 
shname <- c("B1", "B2", "F1", "F2") 
shfile <- st_read(shapefiles[xx]) 
ecosite <-shfile$Name 
#shfile$geometry 
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#plot(shfile["MaskID"]) 
 
 
######### 
#Create Loop for graphs  
 
#Loop through each folder  
for (year_to_filter in years){ 
  #filter for all folders containing the searched year in the name, loop it from 2017 till 
2022 
  filtered_dirs_1year <- 
filtered_dirs[grep(paste0("Mintpy_",year_to_filter),filtered_dirs)] 
   
  for (folder in filtered_dirs_1year) { 
    #construct the full path to the timeseries.h5 hdf5 file  
    file_path <- file.path(folder, "timeseries.h5") 
     
    #Check if the first file exists 
    folder_name <- strsplit(folder, "_")[1][[1]] 
    year_orbit <-paste(folder_name[length(folder_name)-1], 
folder_name[length(folder_name)], sep="_") 
    df_name <- paste0("df",year_orbit, collapse= "_") #collapse is like sep, but only 
inbetween and not in the end 
    df_variable <-reading_clipping_exporting_hdf5(filepath= file_path,shapefile= 
shfile)*1000 #change unit to mm instead of meters 
    assign(df_name, df_variable, envir =.GlobalEnv) 
    print(df_name) 
  } 
   
} 
 
 
df_long1 <- df2021_EastOrbit %>% 
  pivot_longer(cols = everything(), names_to = "Date", values_to="Value") 
df_long2 <- df2021_MiddleOrbit %>% 
  pivot_longer(cols = everything(), names_to = "Date", values_to="Value") 
df_long3 <- df2021_WestOrbit %>% 
  pivot_longer(cols = everything(), names_to = "Date", values_to="Value") 
 
df_long <- rbind(df_long1, df_long2, df_long3) 
 
summary_df <- df_long %>% 
  group_by(Date) %>% 
  summarise(mean = mean(Value), 
            sd = sd(Value), 
            n = n()) 
df_list[[xx]]<- as.data.frame(summary_df) 
 
g <- ggplot(df_long, aes(x = Date, y = Value, group = Date)) + 
  #stat_boxplot(geom ="errorbar", width = 5)+ 
  geom_boxplot(width = 0.5, coef = 1.5, notch = FALSE, outlier.shape = 19, aes(color = 
"Boxplots"), outlier.size = 0.5) + #, outlier.shape = NA 
   
  geom_errorbar(data = summary_df, aes(y = mean, ymin = mean - sd, ymax = mean + sd), 
                width = 0.5) + #, color = "blue", linewidth = 0.6 
  geom_line(data = summary_df, aes(x = Date, y = mean, group  =1, color = "Surface 
Deformation")) + 
  geom_point(data= summary_df, aes(x = Date, y = mean, color = "Mean"), pch = 3)+ 
  geom_smooth(data= summary_df, method = "lm", aes(x=Date,y=mean, group = 1, color 
="Trend"), linetype ="dashed" )+ 
  geom_hline(yintercept = 0, linewidth = 0.7)+ 
 
  labs(x = "Date", y = "Displacement (mm)") + 
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  ggtitle(paste0("Merged Orbits 2021, ", shname[xx])) 
 
g <- g + 
  labs(colour = "Statistical Parameters")+ 
  scale_color_manual(values = c("black", "red", "blue", "purple"), 
                     guide = guide_legend(override.aes = list(shape = c(20, 4,18,18), size 
= 3)))+ 
  theme_bw()+ 
  theme(plot.margin = margin(35,20,20,20),axis.text.x = element_text(angle = 45, hjust=1), 
        legend.key = element_rect(colour = NA, fill = NA), 
        legend.key.size = unit(0.4,"cm"), 
        legend.key.height = unit(0.4, "cm"), 
        legend.key.width = unit(0.5, "cm"), 
        legend.title = element_text(size = 5), 
        legend.text = element_text(size = 5), 
        legend.justification = c(0.98,0.02), legend.position = c(0.98,0.02), 
        legend.box.background = element_rect(linewidth = 0.7), 
        legend.margin = margin(0.1,0.1,0.1,0.1)) #, 
        #legend.key.size = unit(0.15, "cm")) #, legend.key.size = unit(1, "lines") 
 
g 
ggsave(paste0("2021_merged_orbits_", shname[xx],".png"), plot = g, width = 21, height = 10, 
units = "cm") 
 
 
####### 
summary_df1 <- df_long1 %>% 
  group_by(Date) %>% 
  summarise(mean = mean(Value), 
            sd = sd(Value), 
            n = n()) 
 
g <- ggplot(df_long1, aes(x = Date, y = Value, group = Date)) + 
  #stat_boxplot(geom ="errorbar", width = 5)+ 
  geom_boxplot(width = 0.5, coef = 1.5, notch = FALSE, outlier.shape = 19, outlier.colour = 
"black", outlier.size = 0.5) + #, outlier.shape = NA 
   
  geom_errorbar(data = summary_df1, aes(y = mean, ymin = mean - sd, ymax = mean + sd), 
                width = 0.5) + #, color = "blue", linewidth = 0.6 
  geom_line(data = summary_df1, aes(x = Date, y = mean, group  =1), color = "blue") + 
  geom_point(data= summary_df1, aes(x = Date, y = mean), color = "red", pch = 3)+ 
  geom_smooth(data= summary_df1, method = "lm", aes(x=Date,y=mean, group = 1), color 
="blue", linetype ="dotted" )+ 
  geom_hline(yintercept = 0, linewidth = 1)+ 
   
  labs(x = "Date", y = "Displacement (mm)") + 
  ggtitle("Focus on statistics 2021 East orbit, B1")+ 
  theme(plot.margin = margin(35,20,20,20),axis.text.x = element_text(angle = 45, hjust=1)) 
#, vjust = 0.5 
 
g 
ggsave("2021_EastOrbit_Focus.png", plot = g, width = 15, height = 10, units = "cm") 
 
######## 
#plot differneces 
 
b1 <- df_list[[1]] 
b2 <- df_list[[2]] 
f1 <- df_list[[3]] 
f2 <-df_list[[4]] 
 
df_b_diff <- data.frame(Date = b1$Date, Difference = b1$mean - b2$mean) 
#df_b_diff$Date <- as.Date(df_b_diff$Date) 
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df_f_diff <- data.frame(Date = f1$Date, Difference = f1$mean - f2$mean) 
 
g6 <- ggplot(df_b_diff, aes(x = Date, y = Difference, color = "Bog Difference (B1-B2)"))+ 
  geom_line(aes(group = 1))+ 
  geom_line(data= df_f_diff, aes(x = Date, y = Difference, color = "Fen Difference (F1-
F2)", group = 1))+ 
  scale_color_manual(values = c("forestgreen", "lightblue"))+ 
  geom_hline(yintercept = 0, linewidth = 1)+ 
 # scale_x_date(labels = function(x) format(x, "%b %y"), date_breaks = "1 month")+ 
  labs(x = NULL,y= "Displacement ", title = "Ecosite differences 2021", color = "Ecosite 
Differences")+ 
  theme_bw()+  
  theme(plot.margin = margin(35,20,20,20), axis.text.x = element_text(angle = 45, hjust =1, 
size = 6), 
        legend.title = element_text(size = 6), 
        legend.text = element_text(size = 6), 
        legend.justification = c(0.98,0.02), legend.position = c(0.98,0.02), 
        legend.box.background = element_rect(linewidth = 0.7), 
        legend.margin = margin(0.1,0.1,0.1,0.1)) 
 
g6 
ggsave("Ecosite_Diff_2021.png", plot = g6, width = 21, height = 10, units = "cm") 
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Meteo Station Plots 
library(ggplot2) 
library(lubridate) 
library(scales)  
library(gridExtra) 
 
#setwd 
#setwd("..") 
s#etwd("Documents/data/MetStation/Kearl") 
getwd() 
 
#import data 
data<- read.csv("Kearl_daily_cleared.csv", header=TRUE, sep=",") 
 
data$season <- ifelse(month(data$date) >=3 & month(data$date) <= 10, "summer", "winter") 
 
data$month <- month(data$date, label = TRUE) 
data$date <- as.Date(data$date) 
 
dfs_by_year <- split(data, format(data$date, "%Y")) 
 
#calculate prec sum and temp mean of Jan and July 
sum_precp_yearly <- list() 
mean_temp_jan <- list() 
mean_temp_jul <- list() 
for (year in seq(2017,2022)){ 
  year_df <- dfs_by_year[[as.character(year)]] 
  sum_precp_yearly[year-2016] <- sum(year_df$precipitation) 
  mean_temp_jan[year-2016] <- mean(year_df$temperature[format(year_df$date, "%m") =="01"]) 
  mean_temp_jul[year-2016] <- mean(year_df$temperature[format(year_df$date, "%m") =="07"]) 
} 
 
#combine plots for all years underneath 
plot_list <- list() 
 
#Loop 
for (year in seq(2017,2022)){ 
  year_df <- dfs_by_year[[as.character(year)]] 
  year_df <- subset(year_df, format(date, "%m") %in% c("05", "06", "07", "08","09", "10")) 
   
  p <- ggplot(year_df, aes(x = date)) + 
    geom_line(aes(y = temperature, color = "Temperature [°C]")) +  
    geom_bar(data = year_df, aes(y = precipitation * 2, fill = "Precipitation [mm]"), stat 
="identity") + 
    scale_y_continuous(sec.axis = sec_axis(trans=~.*0.5, name = "Precipitation (mm)"), name 
= "Temperature (°C)") + 
    scale_x_date(date_labels = "%b", date_breaks = "1 month") + 
    labs(x = NULL, title = paste("Kearl Weather Station Data", year)) + 
    geom_hline(yintercept = 0, linewidth = 1) + 
    theme_bw()  
   
  p <- p + 
    scale_color_manual(values = c("Temperature [°C]" = "red", "Precipitation [mm]" = 
"steelblue")) + 
    scale_fill_manual(values = c("Precipitation [mm]" = "steelblue")) + 
    theme(plot.margin = margin(35,20,20,20), 
          plot.title = element_text(paste("Kearl Weather Station Data", year)), 
          legend.position = c(0.8835, 1.05), 
          legend.text = element_text(size = 10), # I changed this to 12, assuming you want 
it to be visible 
          legend.key.size = unit(0.9, "line" ), 
          legend.spacing.y = unit(0, "cm"), 
          legend.box.background = element_rect(color = "black", size = 0.5)) +  
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    guides(fill = guide_legend(title = NULL), color = guide_legend(title = NULL)) 
   
   
 
  #add plot to plot list 
  plot_list[[as.character(year)]] <- p 
  p 
  ggsave(paste0("Kearl_seasonal",year,".png"),p, width = 20, height =8, units = "cm") 
} 

Groundwater Wells 
library(ggplot2) 
library(lubridate) 
library(scales)  
library(gridExtra) 
library(dplyr) 
 
#setwd 
#setwd("..") 
#setwd("Documents/data/gw_wells") 
getwd() 
 
 
#import data 
 
data<- read.csv("gw_checked_surfacedepth.csv", header=TRUE, sep=",") 
##### 
data$Date.and.Time <- as.POSIXct(data$Date.and.Time, format = "%d-%m-%Y %H:%M") 
 
variable_names <- names(data) 
variable_names1 <- variable_names[c(8,13,15,16,19)] 
 
result_list <- list() 
for (var_name in variable_names1){ 
  data_daily <-mutate(data,date = as.Date(data$Date.and.Time)) 
  data_daily <- data_daily %>% 
    group_by(date) %>% 
    summarize(!!var_name := mean(!!as.name(var_name),na.rm =TRUE)) 
  result_list[[var_name]] <-data_daily 
} 
 
#write.csv(result_list, "selected_wells_daily.csv", row.names = FALSE) 
 
 
#data_daily<- read.csv("selected_wells_daily.csv", header=TRUE, sep=",") 
######### 
#plot wells T2-2, T4-NC-2 for south and T3-EC-3, T1-5 for north side 
#change to T2_5 
#t2_2 <- 
data.frame(result_list$MAR.T2.2.checked.$date,result_list$MAR.T2.2.checked.$MAR.T2.2.checke
d.*-1) 
#colnames(t2_2)[1]<- "Date" 
#colnames(t2_2)[2]<- "T2_2" 
t2_5 <- 
data.frame(result_list$MAR.T2.5.checked.$date,result_list$MAR.T2.5.checked.$MAR.T2.5.checke
d.*-1) 
colnames(t2_5)[1]<- "Date" 
colnames(t2_5)[2]<- "T2_5" 
t4_2 <- 
data.frame(result_list$MAR.T4.NC.2.checked.$date,result_list$MAR.T4.NC.2.checked.$MAR.T4.NC
.2.checked.*-1) 
colnames(t4_2)[1]<- "Date" 
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colnames(t4_2)[2]<- "T4_2" 
t3_3 <-
data.frame(result_list$MAR.T3.EC.3.checked.$date,result_list$MAR.T3.EC.3.checked.$MAR.T3.EC
.3.checked.*-1) 
colnames(t3_3)[1]<- "Date" 
colnames(t3_3)[2]<- "T3_3" 
t1_5 <- 
data.frame(result_list$MAR.T1.5.checked.$date,result_list$MAR.T1.5.checked.$MAR.T1.5.checke
d.*-1) 
colnames(t1_5)[1]<- "Date" 
colnames(t1_5)[2]<- "T1_5" 
t3_4 <- 
data.frame(result_list$MAR.T3.EC.4.checked.$date,result_list$MAR.T3.EC.4.checked.$MAR.T3.EC
.4.checked.*-1) 
colnames(t3_4)[1]<- "Date" 
colnames(t3_4)[2]<- "T3_4" 
 
p <- ggplot(data= t2_5, aes(x= Date, y= T2_5))+ 
  geom_smooth(aes(color = "T2_5 Fen South"), span = 0.07, se= FALSE) 
 
p <- p +  
  geom_smooth(data = t4_2, aes(x= Date, y= T4_2, color = "T4_2 Fen South"), span = 0.07)+ 
  geom_line(data = t4_2, aes(x = Date, y = T4_2, color = "T4_2 Fen South")) 
 
p <- p +  
  geom_smooth(data= t3_3, aes(x= Date, y= T3_3, color = "T3_3 Fen North"), span= 0.07, se = 
FALSE) 
 
p <- p + 
  geom_smooth(data= t1_5, aes(x= Date, y= T1_5, color = "T1_5 Fen North"), span = 0.07, se 
= FALSE) 
 
'p<- p+  
  geom_line(data = t3_4, aes(x = Date, y = T3_4, color = "T3_4"), linewidth = 0.2, alpha = 
0.3)' 
 
p <- p +  
  scale_x_date(labels = function(x) format(x, "%b %y"), date_breaks = "1 month")+ 
  labs(x = NULL,y= "WT depth to surface ", title = "Selected GW Wells")+ 
  theme_bw()+  
  theme(plot.margin = margin(35,20,20,20), axis.text.x = element_text(angle = 45, hjust 
=1)) 
 
p <- p +  
  geom_hline(yintercept = 0, linewidth = 1) 
 
 
p <- p + 
  labs(colour = "Groundwater Wells")+ 
  scale_color_manual(values = c( "limegreen","steelblue", "forestgreen", "lightblue")) 
   
p 
 
ggsave("gw_well3.png", plot = p, width = 21, height = 10, units = "cm", dpi = 300) 
 
# plot only May-Oct 
 
#automatic way:  
 
names_list = c("t1_5","t2_2","t3_3", "t3_4","t4_2") 
dataframelist <- list(t1_5 = t1_5,t2_2=t2_2, t3_3=t3_3, t3_4=t3_4, t4_2=t4_2) 
new_datasets <-list() 
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for (name in names_list){ 
  new_datasets[[paste0(name,"_",21)]]<- 
dataframelist[[name]][substr(dataframelist[[name]]$Date, 1,4) =="2021",] 
  new_datasets[[paste0(name,"_",22)]]<- 
dataframelist[[name]][substr(dataframelist[[name]]$Date, 1,4) =="2022",] 
} 
 
element_names <- names(new_datasets) 
for (element in element_names){ 
  new_datasets[[element]] <- subset(new_datasets[[element]], format(Date, "%m") %in% 
c("05","06","07","08","09","10")) 
} 
#Extract all elements as a separat data frame 
for (i in seq_along(new_datasets)){ 
  assign(element_names[i], new_datasets[[i]]) 
} 
 
#plot 21 season 
 
g21 <- ggplot(data= t2_2_21, aes(x= Date, y= T2_2))+ 
  geom_smooth(color = "steelblue", span = 0.07, se= FALSE) 
  #geom_line(color = "steelblue") 
 
g21 <- g21 +  
  geom_smooth(data = t4_2_21, aes(x= Date, y= T4_2), color = "lightblue", span = 0.07) 
  #geom_line(data = t4_2_21, aes(x = Date, y = T4_2), color = "lightblue") 
 
g21 <- g21 +  
  geom_smooth(data= t3_3_21, aes(x= Date, y= T3_3),color = "limegreen", span= 0.07, se = 
FALSE) 
  #geom_line(data= t3_3_21, aes(x = Date, y = T3_3), color = "limegreen") 
 
g21 <- g21 + 
  geom_smooth(data= t1_5_21, aes(x= Date, y= T1_5),color = "forestgreen", span = 0.07, se = 
FALSE) 
  #geom_line(data= t1_5_21, aes(x= Date, y= T1_5),color = "forestgreen") 
 
#g21<- g21+  
  #geom_line(data = t3_4_21, aes(x = Date, y = T3_4), color = "black" , linewidth = 0.2, 
alpha = 0.3) 
  #geom_line(data = t3_4_21, aes(x = Date, y = T3_4), color = "black" ) 
 
g21 <- g21 +  
  scale_x_date(labels = function(x) format(x, "%b %y"), date_breaks = "1 month")+ 
  labs(x = NULL,y= "WT depth to surface ", title = "Selected GW Wells -  2021")+ 
  theme_bw()+  
  theme(plot.margin = margin(35,20,20,20), axis.text.x = element_text(angle = 45, hjust 
=1)) 
 
g21 <- g21 +  
  geom_hline(yintercept = 0, linewidth = 1) 
 
g21 <- g21 + 
  scale_color_identity(name = "Legend", 
                       breaks = c("steelblue", "lightblue", "limegreen", "forestgreen"), 
                       labels = c("T2_2 Fen South","T4_2 Fen South","T3_3 Fen North", "T1_5 
Fen North"), 
                       guide = "legend" )+ 
  labs() 
g21 
 
ggsave("gw_21seasonal_smooth.png", plot = g21, width = 21, height = 10, units = "cm", dpi = 
300)   
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#plot 22 
 
g22 <- ggplot(data= t2_2_22, aes(x= Date, y= T2_2))+ 
  geom_smooth(color = "steelblue", span = 0.07, se= FALSE) 
#geom_line(color = "steelblue") 
 
g22 <- g22 +  
  geom_smooth(data = t4_2_22, aes(x= Date, y= T4_2), color = "lightblue", span = 0.07) 
#geom_line(data = t4_2_22, aes(x = Date, y = T4_2), color = "lightblue") 
 
g22 <- g22 +  
  geom_smooth(data= t3_3_22, aes(x= Date, y= T3_3),color = "limegreen", span= 0.07, se = 
FALSE) 
#geom_line(data= t3_3_22, aes(x = Date, y = T3_3), color = "limegreen") 
 
g22 <- g22 + 
  geom_smooth(data= t1_5_22, aes(x= Date, y= T1_5),color = "forestgreen", span = 0.07, se = 
FALSE) 
#geom_line(data= t1_5_22, aes(x= Date, y= T1_5),color = "forestgreen") 
 
g22<- g22+  
  geom_line(data = t3_4_22, aes(x = Date, y = T3_4), color = "black" , linewidth = 0.2) 
#geom_line(data = t3_4_22, aes(x = Date, y = T3_4), color = "black" ) 
 
g22 <- g22 +  
  scale_x_date(labels = function(x) format(x, "%b %y"), date_breaks = "1 month")+ 
  labs(x = NULL,y= "WT depth to surface ", title = "Selected GW Wells - snow free period 
2022")+ 
  theme_bw()+  
  theme(plot.margin = margin(35,20,20,20), axis.text.x = element_text(angle = 45, hjust 
=1)) 
 
g22 <- g22 +  
  geom_hline(yintercept = 0, linewidth = 1) 
 
g22 <- g22 + 
  scale_color_identity(name = "Legend", 
                       breaks = c("steelblue", "lightblue", "limegreen", "forestgreen"), 
                       labels = c("T2_2 Fen South","T4_2 Fen South","T3_3 Fen North", "T1_5 
Fen North"), 
                       guide = "legend" )+ 
  labs() 
g22 
 
ggsave("gw_22seasonal_smooth.png", plot = g22, width = 21, height = 10, units = "cm", dpi = 
300)  
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