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Abstract 

Abstract 

Oil and gas exploration in northern Alberta has led to the creation of dense networks of linear 

disturbances boreal forest, commonly referred to as seismic lines. The slow regeneration of 

these clearings has had a number of detrimental ramifications, most prominently the decrease 

in the woodland caribou population. The variability of microtopography plays a crucial role in 

the regeneration of seismic lines in wetlands, as small elevations rising above the water table 

allow seedlings to develop. Therefore, information on the extent of microtopography is highly 

relevant to the coordination of efforts aiming to restore microtopography. The aim of this study 

was to develop and validate a workflow that extracts information on microtopography from 

Light Detection and Ranging (LiDAR) based on Remotely Piloted Aircraft System (RPAS). 

The analysis of the accuracy of the LiDAR revealed substantial differences in accuracy based 

on environmental conditions and a RMSE of 20 cm for the entire study area. Aircraft based 

LiDAR was found to outperform the RPAS LiDAR substantially, achieving a RMSE of 12 cm, 

indicating that high point density may not be correlated with higher accuracy. The performance 

of the three microtopography quantification methods, Surface Area Ratio (SAR), Depth-to-

Water (DTW) and Microform analysis was found to be dependent on the setting of the 

environment, and research question. When employed to measure the depression of seismic line 

disturbance in a poor fen area, all three measured significant differences in the 

microtopography compared to the undisturbed areas, indicating a slowed regeneration process.  
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1 Introduction  

The boreal forests of Canada cover roughly 627 million ha, translating to 29% of North 

America’s surface area (excluding Mexico). These forests are home to a large diversity of plants 

and animals, whilst the exploitation of its resources contribute greatly to the local economy 

(Brandt et al., 2013). They represent a globally salient carbon sink, as they are home to 28% of 

the global peatland area, storing ca. 147 billion tonnes of soil carbon (Strack, 2008). The 

ecology of these peatlands is controlled by a delicate balance of factors such as hydrology, 

vegetation, chemistry, climate, etc. As a consequence, any disturbances of these factors may 

lead to the deterioration of the ecological functioning of the peatlands, resulting in a loss of 

biodiversity and high greenhouse gas emissions (Price et al., 2013; Strack, 2008; Strack et al., 

2019). 

Alberta currently contains one of the largest petroleum deposits worldwide, which is subject to 

intensive industrial exploitation. As the oil is bound to sand and spread across a vast area of the 

boreal forest, the search for oil has resulted in the creation of a dense networks of so-called 

seismic lines. These are kilometre-long clearings through the forest that serve to transport 

equipment to locate oil resources with the use of seismic measurements. Alone in Alberta, these 

seismic lines have a combined estimated length of up to 1,7 Million km. Their influence on 

their surrounding ecosystems is far-reaching and complex. On many of these lines the 

vegetation is failing to recover and is stuck in a state of so-called arrested succession (Brandt, 

2013). This effect is especially pronounced in wetland areas, as these complex ecosystems 

present challenging conditions for vegetation regrowth, due to the wet, waterlogged conditions 

characteristic of these areas (van Rensen et al., 2015). 

The persistent presence of these seismic lines has been shown to aid predators by making 

hunting and traveling easier. This has been implicated in the dwindling population of the 

woodland caribou (Rangifer tarandus caribou), an animal now listed as threatened under the 

Canadian Species-at-Risk Act (Branch, 2023). Furthermore, these seismic lines also are 

observed to increase greenhouse gas emissions, thus exacerbating the problem of climate 

change (Lovitt et al., 2018). In order to counter these problems, a number of initiatives aim to 

restore seismic lines (Hebblewhite, 2017). 

One important variable to determine the likelihood of future recovery of seismic lines in 

wetland environments, is the level of microtopography. Little elevations called hummocks form 

elevated platforms over the shallow water table, typically encountered in wetlands areas. These 
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elevations form important habitats for seedlings, which require a dry setting in order to develop 

a healthy root structure. Seismic lines with a healthy hummock and hollow microtopography 

are thus more likely to see further recovery (Lieffers and Rothwell, 1987). 

In order to speed up the regeneration process of seismic lines stuck in a state of arrested 

succession, active restoration treatments, such as artificial mounding are being applied to 

enhance the level of microtopography (Filicetti et al., 2019). Identifying lines with poor 

microtopography is therefore highly desirable to efficiently direct future restoration work to 

areas that would likely benefit from mounding. Previous researchers have measured 

microtopography using Remotely Piloted Aircraft Systems (RPAS) based photogrammetry. 

Photogrammetry however is limited in its ability to reliably penetrate the canopy cover of dense 

vegetation, therefore limiting the accurate capture of complex ground features to open terrain 

(Lovitt et al., 2017). Lovitt speculated that RPAS based LiDAR sensors with high point 

densities would be able to reliably penetrate thick canopy cover, which would allow for the 

extraction of ground features in complex forested sites. 

Based on these assumptions this thesis aims (i) to build a LiDAR processing workflow that 

allows for the generation of high-resolution Digital Terrain Models (DTM) and evaluate the 

accuracy on a variety of seismic lines. The quality of the RPAS based LiDAR will then be 

compared to lower resolution aircraft-based LiDAR, to evaluate if measurements of 

microtopography are scalable to a potentially much larger area. Based on the generated DTMs 

(ii) different methods of quantifying the microtopography will be evaluated and (iii) applied in 

a case study on a wetland, to evaluate the effect of seismic lines on the microtopography. 

The findings of this research will contribute to the Boreal Ecosystem and Recovery Assessment 

(BERA) project. The project aims to support ecosystem recovery efforts by enhancing our 

understanding of the implications of industrial disturbances on natural ecosystem dynamics and 

formulating strategies for restoration. As part of its resources, the project includes tools such as 

the Forest Line Mapper (FLM), that map the impact area of seismic lines, as outlined by Queiroz 

et al., 2020. Ultimately the methods outlined in this thesis are to be integrated into the FLM. 
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2 Background 

 

Figure 1 Loca%on of the oil sand area in the boreal forest of northern Alberta (Langor, 2015). 

2.1 Oil and Gas Exploration in Alberta 

Situated in the boreal forests of northern Alberta, the Canadian oil sands are third largest oil 

deposits worldwide, with some 160 billion barrels of economically recoverable bitumen. As 

visible in Figure 1, the oil sands lie beneath some 142,200 km2 of Alberta, located in three 

separate regions; Cold Lake, Peace River and Athabasca (Government of Alberta, 2023) . Open 

pit mining is one way of accessing the oil sands close to the surface, leading to the complete 

removal of the boreal forest landscape, permanently altering the ecology of these areas. 

Although the disturbance created by this practice is extremely disruptive, it tends to be spatially 

concentrated. In order to access the deeper oil sand deposits, situ methods have to be applied, 

which rely on the injection of large amounts of hot water vapour to mobilise the viscous 

bitumen, that can then be pumped to the surface. The necessary infrastructure for these 

operations (such as access roads, pipelines, well pads and seismic lines) leads to low intensity 

disturbance spread out over large areas (Johnson and Miyanishi, 2008). 
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Seismic techniques are required to locate the oil sand deposits. These rely on linear forest 

clearings that allow for the movements of the equipment and workers. Beginning in the 1950s, 

these so-called 2D seismic lines were cut using bulldozers clearing 5 to 10 metre wide openings 

in low density networks covering most of northern Alberta. The density of these lines ranges 

from 1 km up to 10 km per km2 in the primary oil producing region around Fort McMurray 

(Lee and Boutin, 2006). This practice often led to the complete removal of the topsoil, and it 

became apparent that a method introducing less disturbance was desirable. Starting in the 

1990s, a narrower type of seismic lines with a greatly reduced width between 2 and 4 metres 

emerged. Often referred to as 3D lines or “low impact” seismic lines, these are often employed 

in much denser networks of up to 40 km of line per km2. As the practice of in situ oil extraction 

was expanding, it became evident that frequent seismic surveys would benefit the oil extraction 

process as the injection of steam could be controlled more efficiently. This led to the practice 

of 4D seismic lines, meaning that lines are frequently recut to enable new surveys (Stern et al., 

2018). 

 

 

Figure 2 Seismic line located in a peatland in Stony Mountain. Of par%cular note should be 
the lack of recovery on the seismic line inside the peatland..  
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Figure 3 Seismic line intersec%ng upland ecosites. Notable recovery in some sec%ons. 

Initially, it was expected that these seismic lines would regrow and the ecosystems would return 

to their previous state, but it quickly became obvious that for many seismic lines this recovery 

would happen at unacceptably long time scales (van Rensen et al., 2015). Whilst many seismic 

lines experience a period of vegetation regrowth in the beginning, they then often reach a state 

of arrested succession (as shown in Figure 2 and Figure 3), in which the vegetation struggles to 

rebound to common recovery criteria. This also applies to the “low impact” seismic lines, where 

the recovery process has been taking longer than expected (Dabros et al., 2018). 

The slow recovery of these linear disturbances is associated with a wide array of problems. The 

most prominent example is the rapid decline of the woodland caribou (Rangifer tarandus 

caribou). This is largely attributed to the increased line of sight and ease of movements for 

predators such as wolves (as visible in Figure 4), leading to more caribou falling victim to 

predation (Latham et al., 2011). Another problem is the increased release of potent greenhouse 

gases such as CH4 on seismic lines in peatlands (Strack et al., 2019). Other effects such as the 

wide spread fragmentation of the boreal forest, leading to a variety of edge effects are not well 

understood, but are associated with a change in plant compositions of the surrounding forest 

ecosystem (Dabros et al., 2018; Echiverri et al., 2022). 
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To understand the slow recovery on seismic lines, the site limiting factors impeding the 

recovery process must be studied. These include soil compaction from heavy machinery, 

different microclimatic conditions and increased human access to remote areas, leading to e.g., 

disturbance by recreational terrain vehicles. Moreover, the challenging climatic conditions in 

northern Alberta lead to slow overall plant growth, making recovery a slow process (Dabros et 

al., 2018). One frequently mentioned site limiting factor important to the recovery of seismic 

lines in peatlands is the level of microtopography (Filicetti et al., 2019; Stevenson et al., 2019). 

 

 
Figure 4 Wolves patrolling a seismic line. 

2.2 Microtopography in Wetlands 

The term microtopography describes the variations in surface height occurring in small scales 

in peatlands (Cresto Aleina et al., 2016).These so-called microforms are often divided into 

hummocks and hollows. Hummocks describes areas where the growth of sphagnum has 

accumulated to form a small prominence, while hollows describe the depressed areas separating 

the hummocks (Holmquist et al., 2014; Strack, 2008). These microforms often occur around 

the 1x1 metre scale (Cresto Aleina et al., 2015). 
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The contribution of the different factors responsible for the formation of microforms remains a 

subject of debate between researchers. Hogg, 1993 suggests that the pattern of microforms is 

largely driven by the spatial distribution of sphagnum species and inherent variations in their 

rates of decomposition. Other authors point to local variations in the soil moisture and depth to 

water table as primary drivers of microform formation (Strack, 2008; Acharya et al., 2015). 

The hummocks and hollows have a strong influence on the ecological functioning of peatlands. 

They greatly affect the local hydrology as a consequence of the improved water retention caused 

by the microforms slowing down the waterflow and high water holding capacity of sphagnum 

species (De Roos et al., 2018). Hummocks are especially important for the establishment of 

seedlings as they provide an important buffer from the high water table in wetlands. This 

provides the roots more space to grow, offers a favourable moisture environment and provides 

the seedling a milder microclimate (Lieffers and Rothwell, 1987) 

The lack of microtopography on seismic lines has been shown to heavily reduce the 

establishment of seedlings, and to be one of the major site limiting factors inhibiting recovery 

(Caners and Lieffers, 2014; Filicetti et al., 2019). Stevenson et al., 2019 measured the 

microtopography on seismic lines in peatlands to be reduced on average by 8 cm, with strong 

depressions being observable on lines even decades after their creation. This is linked to a 

positive feedback loop, whereby the high water table, amongst other factors, inhibits the growth 

of hummock forming sphagnum species (Caners and Lieffers, 2014). 

2.2.1 Mounding 

In order to disrupt the positive feedback loop described in chapter 2.2 and to restore the 

variability of microtopography and accelerate recovery, the practice of creating artificial 

microtopography by mounding has been established, as visible in Figure 5. Mounding involves 

the excavation of mineral and organic soil, forming hummocks next to little hollows (Sutton, 

1993). These mounds create an enhanced growing site for seedlings, by increasing the potential 

rooting depth and providing a warmer microclimate (Pyper et al., 2014). Filicetti et al., 2019 

measured increased seedling growth and higher survivability of lines treated by mounding, but 

also found a varying effectiveness of mounding on poor fens. The practice of mounding is very 

expensive, costing on average 12.500 CAD dollars per km of seismic line, mainly due to the 

remoteness and narrowness of many lines (Pyper et al., 2014). Mounding also leads to the 

disturbance of regrown vegetation and is associated with increased greenhouse gas emissions. 
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This happens as a consequence of exposure of organic mass to aerobic decomposition leading 

to higher mineralization of carbon, while the open water is associated with higher CH4 

emissions (Schmidt et al., 2022). 

 

Figure 5 A mounded line located parallel to a newly cut line. 

It is therefore, highly desirable to apply mounding exclusively to lines that would benefit from 

a restoration of microtopography. Consequently, measuring the level of microtopography on 

seismic lines is an important step in order to direct restoration efforts more efficiently. A 

previous study by Stevenson et al. 2019 used in-situ altimeter measurements to measure seismic 

line depression. While the altimeter can detect microtopography very accurately, the high 

quantity of lines make it impractical to apply this method on a large scale. 

2.3 Remote Sensing Microtopography 

Remote sensing offers a greater scalability of microtopography measurements. Although the 

resolution of spaceborne sensors is improving, at present they are not good enough to capture 

the small scale variation found between seismic lines and their surroundings (Lehmann et al., 

2016). Therefore, airborne platforms have to be employed. Here the differentiation should be 

made between piloted aircraft systems and remotely piloted aircraft systems (RPAS). 

RPAS systems have the advantage of offering very high spatial and temporal resolution, 

providing the ability to collect high-quality data, whilst being cost effective compared to piloted 

systems when smaller areas are surveyed. In general flight campaigns are easy to organise and 

require comparatively little capital to conduct. On the other hand, the reliance on favourable 
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weather conditions for flights and image quality can potentially limit their usability in some 

settings (Fritz et al., 2013). Further, their flight times are limited due to poor battery life, limiting 

the area they can cover. The payload restrictions on the typically smaller RPAS, limits the type 

and size of sensors being employed. This can create distortions in the case of the shorter focal 

length of digital cameras amongst others (Westoby et al., 2012). 

Piloted aircraft surveys have the advantage of being able to carry heavy and capable sensor 

payloads at higher altitudes, which enables the surveying of several thousand square kilometres. 

Therefore, highly detailed information can be extracted for large areas, enabling better 

understanding of how ecological dynamics play out throughout on larger scales. Yet, these 

flight campaigns are usually expensive to conduct and require a lot of planning and resources. 

As the monitoring of microtopography is reliant on measuring small variations of the ground 

surface height, methods that create very accurate digital terrain models (DTM) as output are 

needed. One method commonly used by researchers is Light Detection and Ranging (LiDAR), 

which actively sends out and receives electromagnetic radiation. Photogrammetry on the other 

hand relies only on measuring incoming radiation. 

2.3.1 Sensors 

As the monitoring of microtopography is reliant on measuring small variations of the ground 

surface height, methods that create very accurate digital terrain models (DTM) as output are 

needed. One method commonly used by researchers is Light Detection and Ranging (LiDAR), 

which actively sends out and receives electromagnetic radiation. Photogrammetry on the other 

hand relies only on measuring incoming radiation. 

2.3.1.1 Photogrammetry 

Lovitt, 2017 used Structure from Motion (SfM) photogrammetric models to measure 

microtopography in peatlands. SfM however relies on Ground Control Points (GCP) to generate 

spatially correct point clouds. These GCPs have to be placed in the field and the location has to 

be measured by a Real Time Kinematics (RTK) unit. This process is time consuming and may 

not always be feasible, especially if data is collected in places with difficult access. Another 

drawback is that SfM is not good at penetrating thick vegetation. As the technique relies on 

recording objects from different angles to derive their location, foliage will block access to the 

ground surface. Therefore, the number of points measured below tree cover will be relatively 
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low compared to high resolution LiDAR. As a result, the accuracy of digital terrain models 

derived from SfM is highly dependent on the surface complexity (Westoby et al., 2012). Lovitt 

et al 2017 concluded that while UAV photogrammetry is generally suitable for characterizing 

terrain under all but the most heavily vegetated site condition, it is limited in spatial coverage 

and subject to potential errors from factors such as flight and weather conditions. 

2.3.1.2 LiDAR 

High resolution LiDAR promises to correct many of the shortcomings of Photogrammetry. 

LiDAR emits laser pulses and measures the round trip time of the pulse to determine the 

distance to a reflective object. In combination with global navigation satellite systems (GNSS) 

and an internal measurements unit (IMU) these systems can produce highly accurate point 

clouds. As the laser penetrates canopy cover much better than photogrammetric models, high 

density LiDAR point clouds are able to produce accurate ground information through thick 

vegetation, making it a very popular system in forest environments (Chisholm et al., 2013; 

Erdody and Moskal, 2010; Van Rensen et al., 2015). LiDAR does also not rely on preplaced 

GCPs, making it very useful for producing surface models for large study areas. Newer LiDAR 

systems are small enough to be fitted to RPAS, enabling very high point densities. 

2.3.2 Quantifying Microtopography 

2.3.2.1 Moving Window Method 

Peatland microtopography, has previously been quantified through terrestrial or aircraft surveys 

via assessments of topographic features such as relative elevation, slope, vegetation community 

characteristics, and depth to water table (Bubier et al., 1993; Eppinga et al., 2009; Lehmann et 

al., 2016). The classification thresholds for these microforms were often based on site-specific 

surface morphology and researcher subjectivity, with hummocks usually being identified as 

areas rising 20-50cm above surrounding hollows (Hogg, 1993; Bubier et al., 1993; Pouliot et 

al., 2011). However, simple elevation thresholds have generally proven to be a simple but 

effective method for extracting microtopography. Building upon this, Lovitt et al. (2017) 

implemented a method using a low-pass filter to generate a reference surface, from which a 

microtopography surface was derived. This surface was then classified using a pixel-based 

density slicing approach, identifying hummocks, hollows, and trees, based on the assumption 

that areas taller than the average elevation of the surrounding peatland corresponded with 

hummocks, while areas below average elevation corresponded with hollows. 
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Lovitt, 2017 found significant differences between undisturbed and disturbed areas (p<0.01), 

with seismic lines averaging 2.2cm lower than undisturbed peat, and a noticeable overall 

flattening of microtopographic features along these lines. In contrast, undisturbed areas 

exhibited more variation in ground-surface elevations, specifically a heightened occurrence of 

tall hummocks, with ground elevations ranging from -74cm below to +97cm above the 

reference surface, compared to a range of -64cm to +64cm in disturbed areas. Differences were 

also observed in the frequency of hummocks versus hollows, with a higher presence of hollows 

(60.8% coverage) along seismic lines compared to near-equal occurrences in undisturbed areas 

(51.8% hollow coverage). 

2.3.2.2 Depth-to-Water 

Another method of quantifying microtopography in wetland areas is the workflow proposed by 

Rahman et al., 2017, which uses orthophotography and photogrammetric point clouds acquired 

from RPAS. Their approach leveraged the abundance of surface water pockets in peatlands, 

which they assumed to be reflective of groundwater level (GWL) in peatlands with high soil 

conductivity. 

The first step of their workflow produced a DSM and a DTM from the photogrammetric point 

cloud. They then classified surface water using the RPAS-acquired data and extracted a sample 

of water elevations from these classified areas. Using these samples, they generated continuous 

models of GWL through interpolation. Maps of depth to water (DTW) were then generated by 

subtracting their estimates of the GWL with the DTM. Well measurements revealed accuracies 

in the 20-cm range, though errors were concentrated to upland pockets in the study area, and 

areas of dense tree covers. Model estimates in the open peatland areas were considerably better. 

Rahman, 2017, suggested that integrating high-density LiDAR data to the workflow might help 

to more accurately define terrain in challenging locations. 
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3 Materials and Methods 

3.1 Study Area 

All of the study sites are located in northern Alberta in the boreal forest natural subregion and 

within the Athabasca Oil Sands area (as visible in Figure 6). The study areas is defined by its 

subartic climate with cold winters and mild to warm summers. Average temperatures range 

from -17.4°C in January to 17.1°C in July. The annual mean precipitation is 418.6 mm, with 

most of the precipitation falling in early summer. The main growing season starts in May and 

lasts until September (Canada, 2013). 

In upland regions, the vegetation is often dominated by coniferous trees like Jack Pine (Pinus 

banksiana), alongside deciduous species such as Aspen (Populus tremuloides) and Balsam 

Poplar (Populus balsamifera). In contrast, the wetlands feature Black Spruce (Picea mariana) 

and Tamarack (Larix laricina), which are adapted to, wet conditions, along with a variety of 

sphagnum species. The understory across both areas includes a mix of shrubs, such as Labrador 

tea, berry-producing plants, and various herbaceous plants and ferns. 

The Kirby South site is located 50 km from Lac la Biche and leased by the oil and gas company 

Canadian Natural Resource Limited (CNRL). Here active extraction of oil sand deposits is 

going via in-situ methods. Therefore, there are a number of linear disturbances such as mineral 

filled roads, pipelines and a dense network of seismic lines disrupting the boreal landscape. The 

3D network of seismic lines here is also subject to frequent re-disturbance, as extraction 

processes here are actively monitored. 

The Stony Mountain site is situated on a plateau between 600 to 850 metres above sea level. As 

it dominates the surrounding areas, it is the origin of a number of regional catchments divided 

by terrain features. Active exploration of oil sand deposits is ongoing, but currently no active 

extraction is taking place here. 

The Surmount site is situated on the eastern slope of Stony Mountain. Here in situ oil sand 

extraction has been going on since 1997, with many extraction sites having been abandoned. 

Therefore, there are a lot of older seismic lines here that are in a state of regeneration. 
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Figure 6 Loca%on of RPAS flights and valida%on measurements, within the Athabasca region. 

3.2 RPAS LiDAR Data Acquisition 

3.2.1 Material 

The Airborne LiDAR flight campaign was conducted between June and August of 2022. The 

remotely piloted aircraft system (RPAS) was a DJI Matrice 300 RTK that uses a GNSS ground 

unit to transmit real time correction data to the RPAS GNSS unit, in a process referred to as 

real time kinematics (RTK). The LiDAR sensor employed was the DJI Zenmuse L1 Sensor 

which features an internal IMU unit, that is calibrated during the flight and in combination with 

the RTK unit allows surface measurements accurate to 10 cm horizontally and 5 cm vertically 

at a height of 50 meters (DJI, 2022). The laser works at a wavelength of 905 nm, a wavelength 

suitable for the generation of accurate ground models in vegetated areas (Nelson et al., 2022). 

3.2.2 Field Mission 

The RPAS field missions were conducted on the 26. and 27-6-2022 in the Stony Mountain, on 

the 15-7-2022 in Kirby South and on the 4.8.2022 in Surmount. A total of 16 flights were 

conducted. The changes in vegetation between the flight dates are assumed to be negligible. 
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The flights were conducted at a height of 100 meters with an overlap of 50 % between flight 

swaths. The point density per sqm was set at 147 points/m2. 

3.3 GNSS Ground Sampling 

3.3.1 Material 

In order to evaluate and validate the LiDAR workflow on seismic lines a ground sampling 

mission using a Real Time Kinematic Global Positioning System (RTK GPS) was conducted 

over the study areas. The systems used were two Hemisphere S631 GNSS Antennas, that can 

achieve a Two-Dimensional Root Mean Square 95% confidence accuracy of 15 mm. Per point 

five GNSS measurements were averaged with the settings on the rover allowing a maximum 

standard deviation of up to 3 cm between these measurements. This was deemed to be accurate 

enough for validation measurements, while still allowing RTK measurements under canopy 

cover where the GNSS signal is more prone to interception by vegetation. 

3.3.2 Stratification 

 
 
 
 
 
 
 
 
 

Figure 7 Layout of the stra%fica%on of valida%on measurements. 

Figure 7 visualizes the stratification process. In order to gain a comprehensive understanding 

of the accuracy of LiDAR measurements across the wide variety of seismic lines, a stratification 

of seismic lines was conducted according to the guidelines of the BERA Strategy Manual, 2022. 

The validation measurements were conducted in most commonly encountered coarse ecosite 

types Upland Dry, Upland Mesic and Wetland Treed (examples visible in Figure 8). While 

Transitional and Wetland Open are left out, as they only cover a small percentage of the BERA 

study area. The seismic lines in the ecosystems are then differentiated between conventional 

and “low impact” lines. A further differentiation took place between the lines that are in a state 

of arrested succession and advanced regeneration, the classification taking place according to 

the recovery thresholds set by the BERA Manual, 2022. The regeneration on the line was 

important for the later LiDAR measurements, as vegetation will decrease the accuracy of the 
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LiDAR microtopography measurements. An additional set of cluster points was measured in a 

poor fen area, to gain an understanding of accuracy in undisturbed areas. This was done to 

enable a study comparing microtopography on and off seismic lines. 

A B 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

C D 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 

Figure 8 A: Dry Upland site in a state of arrested succession. B: Upland Mesic site in state of 
regenera%on. C: Non-regenera%ng Wetland site. D: Wetland site in a state of regenera%on. 
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3.3.3 Measurements 

Per strata class, two sites were selected, in order have a backup site in case measurements were 

not possible or measurements errors occurred. Per site a total of three transects were conducted. 

The two outer transects include 30 points per transect spaced in 50 cm increments. The purpose 

of the outer transects is to give an estimate of the accuracy on the edge line. The inner transects 

included a total of 60 points with a 25 cm spacing, to allow for a quantification of the 

microtopographic variability independent of the LiDAR measurements, as described in Chapter 

3.5.2. This quantification method followed the methodology of (Stevenson et al., 2019), using 

a RTK unit instead of an altimeter. In total, some 2492 points were surveyed. To measure the 

accuracy to the LiDAR outside of seismic lines, a second dataset was created, following the 

methodology of Lovitt, 2017. This dataset consists of randomly positioned clusters of 5 to 10 

points in a fen area in Kirby. For each of these clusters an additional water table measurement 

was conducted, by measuring the position of the surface water, with the RTK unit. In total 306 

points were measured this way. 

3.4 LiDAR Processing Workflow 

The first steps consisted in processing the raw LiDAR files with the DJI Terra application, in 

order to transform the Photo/IMU/GNSS/Point cloud data storage and calibration files into the 

LAS format commonly used to process LiDAR point clouds (Figure 9, a). 

For further work the LAStools Software was used, an open-source point cloud processing 

program with an active user base. LAStools offers a great variety of settings and through 

multithreading allows efficient processing of large datasets. In the first step the overlapping 

flightlines were eliminated using LASoverage to get rid of artefacts that would skew the results 

into a certain direction (Figure 9, b). The second step of the processing workflow consisted in 

tiling the LiDAR files into 60*60 m tiles with a 5 m buffer. The 5 m buffer is necessary in order 

to prevent artefacts at the edge of the tiles. The size of the tiles optimized for the most efficient 

core usage. The third step was done with LASnoise to filter out isolated artefacts from the point 

cloud that can be created from a variety of factors such as birds and insects (Figure 9, c). 
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Figure 9 Layout of the LiDAR workflow (Hegels, 2023) 
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The fourth step, the ground classification was conducted with LASground (as visible in Figure 

9, d). This step is crucial to achieving accurate end products. Yet, it proves difficult to conduct 

as the ground classification has to work in a variety of environments from dry upland areas to 

wetland. Therefore, 5 seismic lines were chosen with different ecosite types, line widths and 

management status. Then the following parameters: Step, Offset, Bulge and Spike were 

optimised to work well in all environments. The results of the classification were visualised 

using Fugro Viewer software (see Figures 10 and 11) in order to observe how vegetation and 

ground were separated. The result of this classification was a thick ground layer that includes 

the low ground vegetation such as Labrador Tea. 

 

Figure 10 Ground classified points in pink, notable gaps visible. 

 

Figure 11 Corrected classifica%on, with con%nuous ground points. 

In the fifth step LASthin was used to filter out the upper points, only the lowest points were 

kept, in order to filter out the shrubby vegetation. In the sixth step the R package LiDR was 

used to filter the point cloud to a uniform 147 points per m2. This was done to eliminate artefacts 

that come from a variety of factors such as the drone hovering to calibrate its IMU sensor. 

In order to transform the ground classified points into the DTM, ArcGISpro was used, as it 

offers a diverse range of settings for terrain model creation (Figure 9, e). The interpolation type 

used, was the nearest neighbour binning method to create rasters with a pixel resolution of 15 

cm for the high resolution LiDAR dataset. Therefore, every pixel is derived from 3 - 5 points. 
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3.4.1 Validation and statistical Analysis of LiDAR Workflow 

The accuracy of the RPAS LiDAR and the plane based LiDAR datasets was measured by 

comparing the Z-values between the generated DTM and the RTK measurements. This was 

done via the RASTER package in R (Appendix). The statistical metrics to analyse the results 

were selected based on the work of previous studies conducted in this field (Harwin & Lucieer, 

2012;, Lovitt, 2017). These include the root mean square error, mean error, median error. To 

determine if the differences between the classes and datasets are significant, a two-way mixed 

model ANOVA test (α = 0.05) and a Tamhane’s pairwise comparison was performed in R. 

3.5 Quantification of Microtopography 

In order to assess the state of the microtopography on seismic lines it is necessary to find metrics 

that quantify the state of microtopography. In this thesis three different ways of quantifying 

microtopography are used, all based on the high resolution DTMs generated out of the RPAS 

LiDAR point cloud. Figure 12 below shows the workflows employed. 

 

 

Figure 12 Layout of the quan%fica%on workflows. 
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3.5.1 Moving Window Classification  

The microform workflow used in this thesis, is based on the workflow employed by Lovitt, 

2017 to measure microtopography using a moving window as illustrated by Figure 13 reference 

surface was created by averaging each value of a high-resolution DTM with the surrounding 

three metres. This resulted in a smoothed surface, which was then subtracted from the high-

resolution DTM. The outcome was a map with both positive and negative values. In this map, 

values above zero are considered as hummocks, while values below zero, represent hollows. 

The workflow was implemented using the focal function of the Raster package in R. 

3.5.1.1 Validation of Moving Window Classification  

To evaluate the accuracy of this workflow, the random point cluster dataset collected in the 

poor fen was employed. For every cluster the difference between the lowest and the highest 

points was calculated. This resulted in a dataset of in-situ range measurements. To extract the 

range measurements from the microform map, the values from the highest and lowest values 

were extracted, and the range between them calculated. These values were then compared. This 

workflow was conducted using the sp, deplyr and raster packages in R. 

 

 

 

 

 

 

Figure 13 The classifica%on of microforms via the reference DTM, created from 3 m moving 
window. 

3.5.2 Surface Roughness 

This study will attempt to use ruggedness in order to characterize the microtopography 

characteristics. Surface roughness can be calculated from a number of ways. The terrain 

ruggedness index (TRI) developed by Riley et al., 1999, has been used frequently by researchers 

to quantify surface roughness. It uses the matrix of the surrounding elevation values, usually a 

three by three grid and then calculates the square root for these. However, this method is 

difficult to compare to in-situ field measurements. One method that is easy to compare to in-

situ methods is the surface area ratio (SAR) developed by Jenness, 2004. The SAR calculates 
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the surface area and divides it by the planar area. This results in minimum values of 1.0 for 

perfectly flat surfaces and higher values for irregular surfaces. The SAR was calculated using 

the Whitebox tools package available for R, that offers a wide range of geomorphometric tools 

to analyse point clouds and digital surface models (Lindsay, 2016). 

One reason to apply the ruggedness index to measure microtopography is its potential in fractal 

analysis. We will therefore try to evaluate roughness at different scales to see if it is possible to 

use lower resolution airborne LiDAR available at a resolution of 30 points per m2 to characterise 

the health of the hummock and hollow landscape.  

3.5.2.1 Validation of Surface Area Ratio 

To validate the surface area index, a script was written to calculate the surface length vs. planar 

length from the central transects as described in chapter 3.3.3. The code calculates the total 

length of the line by employing the Pythagorean theorem in three-dimensional space. It first 

computes the height differences and horizontal distances between consecutive points in each 

subset. Then, for each pair of adjacent points, it calculates the line distance as the square root 

of the sum of squared horizontal distances and squared height differences. Finally, all of the 

distances are summed up to obtain the total length of the line for each transect. This length is 

then divided by the planar length obtained by summing up the combined length of all the 

horizontal distances. The resulting value is then compared to the SAR value of the raster. This 

is done by extracting all x and y coordinates of the points making up the central transect and 

then averaging them to one value. 

3.5.3 Depth-to-Water 

To determine the DTW in peatlands, the methods in this work are leaning on the method created 

by Rahman, 2017, outlined in chapter 2.3.2.2. In contrast to the photogrammetric point cloud 

used by Rahman, the method described in this work relies solely on the high resolution LiDAR 

measurements. LiDAR technology, despite its numerous advantages, encounters significant 

challenges when applied to the measurement of the water table in peatlands. Firstly, LiDAR is 

not able to collect spectral information on the surface properties, therefore making it 

challenging to classify open water areas. Another one being that unlike photogrammetry, which 

can extract height information for points beneath the water surface, the LiDAR wavelengths 

most commonly used around 900 to 1000 nm are absorbed by the water surface. Therefore, 

there is no signal received from water surfaces. 
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The method proposed by this work aims to capitalise on the absorption of LiDAR by water 

surfaces. This method assumes that the lowest LiDAR point for a 10*10 metre square in a 

wetland area is very close to the water table, as there should be no LiDAR points beneath the 

water table. From the lowest point in each square a raster map is created for the entire wetland 

area, which is the assumed water table position. The water table raster is then subtracted from 

the high resolution DTM, to create a depth-to-water map for the wetland areas. 

3.5.3.1 Validation DTW 

To validate the accuracy of the water table measurements, the in-situ water table dataset 

collected in the poor fen was compared to the water table map generated as described in chapter 

3.3.3. To validate the accuracy of the DTW workflow, the point cluster dataset from the fen 

was used to calculate an in-situ DTW. This was done by subtracting the water table 

measurements from the highest point measurement in the cluster. Then DTW for the highest 

point of the cluster is extracted from the DTW-map and the values are compared to the in-situ 

measurements. 

3.6 Analysis of the Microtopography in the Kirby Fen 

 

Figure 14 Study site in poor fen located in Kirby south. Ac%ve disturbance ongoing. 
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To analyse how the microtopography has changed on seismic lines, we will analyse the seismic 

lines using shapefiles of the seismic lines created by the forest line mapper. The undisturbed 

area was analysed with shapefiles located in the immediate surrounding area of the seismic line 

shapefiles. The seismic lines were differentiated between newly cut lines, re-disturbed lines and 

old lines, based on field visits (study area visible in Figure 14). We analysed the min, max and 

mean for the microforms measured by the moving window method and the SAR. For the Depth 

to Water this method is not suitable, since LiDAR cannot penetrate the surface of the water, 

therefore, only the max and mean height of the microtopography were analysed. Lovit, 2017 

used some 30 shapefiles and averaged the measurements to give an overview how the minimum 

and maximum microform height is affected. This study will instead use the aggregate function 

of the Raster package in R, with a window size of 10*10 metres, which then produce an average 

maximum and minimum of the aggregate cells. To test if the difference between the disturbed 

areas and undisturbed areas is significant, the two tailed T-test (α=0.05) was conducted. 

3.7 Aircraft LiDAR 

A flight campaign to collect airborne LiDAR data was conducted by the company Airborne 

Imaging Inc. between June and August of 2022. The airplane flew at an attitude of 1800 metres 

above the ground and a speed of 160 knots. The LiDAR sensor employed was a Riegl VQ - 

1560ii with a claimed accuracy of 20 mm horizontally and vertically. The claimed point density 

by the provider Airborne Imaging Inc. is 12 points per m2. When measured in LAStools, the 

density is much higher at 30.75 points per m2. 
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4 Results 

The first section of the results will focus on the RPAS-LiDAR accuracy in fen areas, followed 

by a comparison with accuracy of an aircraft based LiDAR system. The second section will 

outline the accuracy of the different quantification workflows, while the third section will 

describe the application of the workflows, on a poor fen site. 

4.1 Assessing the Accuracy of the RPAS LiDAR 

The elevation accuracy assessment revealed significant differences in variances and mean 

accuracy among the various land cover classes (ANOVA test: F = 320, p = 2.2e-16). 

The median elevation values varied across different land cover classes, ranging from -16 cm in 

UL 2 to 23.5 cm in UD 3. Notably, classes such as WT 1 and UD 4 exhibited a median elevation 

difference of less than 6 cm, indicating higher accuracy. However, for the entire dataset, the 

median elevation was found to be 7.4 cm, suggesting a tendency for the LiDAR measurements 

to overestimate the ground surface. 

An analysis of the divergence between mean and median difference revealed a deviation greater 

than 1.5 cm in WT 3, WT 1, UL 2, UL 1, and UD 3, indicating a stronger influence of outliers 

in these classes. The RMSE for the entire dataset was calculated to be 20 cm, with UD 4 

demonstrating the lowest RMSE of 9 cm, while UD 3 exhibited the highest RMSE of 30 cm. 

Tamhane pairwise comparisons were conducted to further investigate the elevation accuracy 

differences among the classes. UL1, WT1, and WT4 emerged as classes displaying the most 

significant differences compared to the other classes. 

Table 1 provide a summary of the elevation accuracy assessment results, offering insights into 

the median, mean and RMSE observed among the land cover classes. 

4.1.1 Differences between the Ecosites  

The RMSE is 18 and 17 cm for wetlands and dry uplands, but is substantially higher for mesic 

upland sites at 23 cm (as visible in Figure 15). The median varies considerably throughout the 

ecosites, as upland dry tends to underestimate the ground surface by -6 cm, while the workflow 

substantially overestimates the ground surface in mesic uplands by 16 cm and 12 cm in 

wetlands. Higher variation of mean and median are found in upland sites, suggesting that these 

ecosites are more affected by outliers. 
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Table 1 Accuracy of RPAS and aircra\ LiDAR throughout the strata. 

  

 

M
et

ric
 

UD
 1

 
UD

 2
 

UD
 3

 
UD

 4
 

UL
 1

 
UL

 2
 

UL
 3

 
UL

 4
 

W
T 

1 
W

T 
2 

W
T 

3 
W

T 
4 

R
P

A
S

 R
M

S
E

 (
cm

) 
18

.8
 

24
.5

 
30

.2
 

9.
0 

20
.8

 
19

.5
 

13
.4

 
15

.2
 

19
.7

 
12

.2
 

20
.1

 
17

.7
 

R
P

A
S

 M
ea

n 
(c

m
) 

14
.4

 
20

.3
 

25
.7

 
6.

5 
14

.0
 

-1
4.

5 
-1

0.
0 

-1
2.

8 
5.

7 
9.

8 
16

.1
 

16
.2

 

R
P

A
S

 M
ed

ia
n 

(c
m

) 
13

.2
 

21
.4

 
23

.5
 

5.
3 

12
.5

 
-1

6.
1 

-1
0.

1 
-1

1.
6 

3.
9 

9.
1 

13
.6

 
16

.4
 

A
irc

ra
ft 

R
M

S
E

 (
cm

) 
9.

8 
18

.0
 

11
.3

 
11

.3
 

9.
3 

6.
9 

13
.9

 
11

.9
 

12
.9

 
9.

6 
10

.0
 

10
.9

 

A
irc

ra
ft 

M
ea

n 
(c

m
) 

-3
.7

 
12

.9
 

9.
4 

5.
6 

8.
3 

-9
.0

 
-1

2.
2 

-8
.4

 
-1

.4
 

4.
5 

4.
8 

9.
3 

A
irc

ra
ft 

M
ed

ia
n 

(c
m

) 
-3

.9
 

14
.5

 
9.

9 
5.

5 
8.

1 
-9

.2
 

-1
2.

3 
-8

.5
 

-1
.5

 
4.

6 
4.

9 
9.

4 

 



 

26 
 

 

 

Figure 15 Performance of RPAS LiDAR throughout the ecosites. 

 

 

Figure 16 Performance of aircra\ LiDAR throughout the ecosites. 
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4.1.2 Difference between the Seismic Line Types 
 

 

Figure 17 RPAS LiDAR Performance of different line types. 

 

 

Figure 18 Aircra\ LiDAR performance through different line types. 
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The difference between seismic lines in a state of arrested succession and regenerating lines is 

considerable, as visible in Figure 17. Lines in a state of arrested succession have a RMSE of 

only 8 cm, while lines in state of active regeneration have an RMSE of 17 cm. On lines in a 

state of arrested succession the median is 0 cm, while it is 9 cm for regenerating lines. The 

LiDAR quality on regenerating lines is also subject to more outliers, which push down the mean 

to 11 cm. When differentiating between line types, the RMSE is lowest on conventional lines 

in a state of arrested succession with 14 cm and slightly higher on “low impact” seismic lines 

in a state of arrested succession with 17 cm. On regenerating lines the RMSE is higher on 

conventional lines with 24 cm than on low impact lines with 19 cm. For all seismic line types 

the LiDAR derived DTM is overestimating the ground surface height with the median being 0 

cm for conventional and 4 cm for “low impact” seismic lines stuck in a state of arrested 

succession. For regenerating lines the median drops to 14 cm for conventional and 12 cm for 

“low impact” line. The state of the vegetation seismic lines, has a significant influence (F = 

315, p = 2e-16) on the accuracy of the LiDAR measurements (Figure 19 A and B) 

 

 

 

 

 

 

 

 

 

Figure A        Figure B 

Figure 19 A: RPAS LiDAR performance between lines in arrested succession and regenera%on. 
B: Aircra\ LiDAR performance between lines in arrest and regenera%on. 

4.1.3 LiDAR Accuracy off Seismic Lines in a Wetland Area 

The accuracy of the workflow suffers outside of seismic lines in peatland areas, as the RMSE 

drops to 19 cm compared to 11 cm for the measurements on the seismic lines in the same fen 

(as visible in Figure 20A). The overestimation of the ground surface is also more pronounced 

outside of the seismic lines with a median of 10 cm compared to 7 cm for seismic line surfaces. 

The increased ground complexity and higher vegetation cover found in areas adjacent to the 

seismic lines, therefore seems to be detrimental to the LiDAR performance.  
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Figure A        Figure B 

Figure 20 A: RPAS LiDAR performance off seismic lines and on seismic lines. B: Aircra\ LiDAR 
performance off seismic lines and on seismic lines. 

4.1.4 Comparison to Aircraft LiDAR 
 

 

Figure 21 Comparison between aircra\ LiDAR and RPAS LiDAR. 

Airborne LiDAR outperforms the RPAS LiDAR as can be observed in table 1 and Figure 21. 

This is the case for all classes, except for UD 4, where the RMSE is 9 cm for the RPAS LiDAR 

and 11 cm for aircraft LiDAR. As visible in Figure 16, the aircraft LiDAR is less prone to 

outliers, suggesting a smoother surface generation. While both aircraft and RPAS LiDAR 

underestimate the ground surface in Dry Upland sites, the median is slightly higher for the 
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aircraft LiDAR at 3 cm compared to 5 cm for RPAS LiDAR. Both RPAS and aircraft LiDAR 

overestimate the terrain in Wetlands and Upland Mesic sites, but the overestimation is more 

pronounced for the RPAS LIDAR. 

The aircraft LiDAR does not show great variation in the accuracy between lines in state of 

arrested succession and regenerating lines, as both classes have an RMSE of 12 cm as visible 

in Figure 18. The median of 4 cm points towards a slight overestimation of the ground surface 

on regenerating lines as it is only 1 cm on lines in a state of arrested succession. This compares 

very favourably to the RPAS LiDAR performance with a RMSE of 22 cm and a median of 13 

cm. 

When differentiating between conventional and “low impact” lines it becomes apparent that the 

accuracy is better on conventional seismic lines as the RMSE is 11 cm vs. the 13 cm on “low 

impact” lines. This is similar to the performance of the RPAS LiDAR, where the best RMSE is 

also achieved on conventional lines in a state of arrested succession. But RPAS LiDAR 

performs much worse on the conventional regenerating lines. 

When comparing the performance of the aircraft LiDAR to the RPAS LiDAR off seismic lines 

in a wetland environment, the former is again performing worse. As the RMSE for the aircraft 

is only 13 cm vs. the 19 of the RPAS. Median offset is 5 cm for the aircraft LiDAR vs 10 cm 

for RPAS, suggesting that overestimation is less of a problem. Interestingly, offset is higher on 

seismic lines with 6 cm vs. 5 cm off seismic lines for the aircraft data, compared to 10 cm off 

seismic lines vs. 7 cm on seismic lines for the RPAS LiDAR. 

4.2 Performance of Quantification Workflows 

4.2.1 Surface Area Ratio 

The Surface Area Ratio as derived from the LiDAR generated DTM is on average larger 

1.052 SAR than the in-situ measurements with a value of 1.028 SAR (as visible in Table 2). 

Between the measurements there is large variation, this is especially pronounced for the 

regenerated wetland sites on conventional lines. Regenerated conventional lines seem to be 

prone to overestimation as visible in Figure 22, resulting in a r2 of 0.03. The overestimation is 

much less pronounced on seismic lines in a state of arrested succession as visible in Figure 22, 

with an r2 of 0.6. 
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Figure 22 Performance of SAR in-situ vs LiDAR measurements. 

 

Category LiDAR In situ Difference 
UL 1 1.06 1.043 1.63% 

UL 2 1.041 1.074 -3.07% 

UL 3 1.093 1.012 8.01% 

UL 4 1.025 1.008 1.68% 

    

ULD 1 1.058 1.028 2.92% 

ULD 2 1.029 1.031 -0.19% 

ULD 3 1.081 1.028 5.16% 

ULD 4 1.016 1.006 0.99% 

    

WT 1 1.042 1.041 0.1% 

WT 2 1.035 1.026 0.88% 

WT 3 1.156 1.034 11.8 % 

WT 4 1.011 1.007 0.4 % 

 
Table 2 Performance of SAR in-situ vs. LiDAR measurements. 

  



 

32 
 

4.2.2 Moving Window 

The moving window method was assessed using the methodology outlined in chapter 3.5.1, the 

goal was to compare the variance between the lowest hollows and the highest hummock within 

a cluster. This resulted in 39 samples. This approach achieved a RMSE of 13.7 cm. The median 

of 8.2 cm and mean of 11 cm suggests that the range between the high and low points is slightly 

overestimated by this method. 

4.2.3 Depth-to-Water Table 

To assess the distance to water, first the accuracy of the LiDAR derived water table 

measurements is validated through the 105 in-situ measurements of the water-table, more on 

this in chapter 3.5.3.1 This resulted in an RMSE of 6.5 cm, a mean of 4.4 cm and a median of 

5.1 cm. The correlation visible in Figure 23 between the measurements is very high. 

The depth to water measurements are validated using the methods outlined in chapter 3.5.3.1, 

which calculated the distance to water by subtracting the level of the water table with cluster 

measurements, this was done for 39 samples. This resulted in an RMSE of 12.7 cm, a median 

of 7 cm and a mean of 5 cm. Suggesting that the overestimation of the ground surface by the 

LiDAR leads to an overestimation of the DTM. 

 

Figure 23 In-situ vs. LiDAR water table measurements. 
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4.3 Case Study: Kirby Fen 

4.3.1 Impact of Seismic Lines on Microtopography 

The analysis of the depth-to-water showed significant differences (p = 0.01) between the mean 

of disturbed and undisturbed areas. In the disturbed area, depth values fluctuate within a range 

of 5.838 cm at the minimum and 61.11 cm at the maximum, with an average depth measurement 

of 23.52 cm. In contrast, the undisturbed areas show depth values spanning from a lower limit 

of 5.3 cm to an upper limit of 63.13 cm. The mean distance to the water table in these areas is 

higher at 26.44 cm. All results are shown in Table 3. 

The moving window methods also revealed significant (p = 0.01) differences between the mean 

values between the areas. In the disturbed areas, the range was distributed from -13.71 to 15.55 

cm, with a mean value of -0.5 cm. Meanwhile, in the undisturbed areas, the range extended 

from -11.68 cm to 17.13 cm, with a slightly positive average of 5.12 cm. 

Significant differences (p = 0.1) were also observed for the Surface Area Ratio. This method 

showed that in disturbed areas, SAR values varied from 1.006 to 1.57, with an average of 1.09. 

For undisturbed areas, the SAR exhibited a broader range from 1.01 to 4.11, accompanied by a 

marginally higher mean of 1.119. 

The hummock/hollow ratio in disturbed areas was found to be 41/59, while in undisturbed areas 

it was slightly different at 43/57. 
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Metric Disturbed Undisturbed 

Depth-to-Water 

Maximum 61.11 63.13 

Mean 23.52 26.44 

Moving Window 

Minimum -13.71 -11.68 

Maximum 15.55 17.13 

Range 29.26 28.81 

Mean -0.5 5.12 

Hummock/Hollow Ratio 43/57 41/59 

Surface Area Ratio 

Minimum 1.006 1.01 

Maximum 1.573 4.11 

Range 0.567 3.1 

Mean 1.109 1.119 

Table 3 Disturbed vs. undisturbed areas for the different quan%fica%on methods. 

4.3.2 Differences between Disturbances 
 

Metric New Disturbance Old Disturbance Re-Disturbance 

Depth-to-Water 

Maximum 0.598 0.652 0.594 

Mean 0.253 0.253 0.21 

Moving Window 

Minimum -0.134 -0.189 -0.123 

Maximum 0.204 0.19 0.263 

Range 0.338 0.38 0.387 

Mean 0.002 -0.005 -0.013 

Surface Area Ratio 

Minimum 1.014 1.017 1.022 

Maximum 1.866 1.729 1.511 

Range 0.851 0.712 0.489 

Mean 1.13 1.122 1.11 

Table 4 Impact of different types of disturbances quan%fied. 
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When applying the depth to water method significant differences between all three line types 

become apparent (p = 0.01). When comparing microform maximum height, old disturbances 

were measured with having the highest value of 65 cm followed by re-disturbances 59 cm and 

new disturbances 59 cm (as shown in Table 4. Interestingly, the mean values for new and old 

disturbances are identical at 25 cm, while re-disturbances have a slightly lower mean value of 

21 cm. 

When using the moving window methods, minimum values measured were lowest in old 

disturbances with 19 cm and around 13 cm for new and re-disturbances. The maximum values 

for new and re-disturbances are 0.204 cm and 0.263 cm, respectively, while for old 

disturbances, it is 0.19 cm. The largest range of 38.7 cm is seen in re-disturbances, closely 

followed by 38 cm in old, while new-disturbances are observed to have a lower range of 34 cm, 

indicating a higher variation in re-disturbances and new-disturbances. The mean values for all 

types are very close to zero.  

New disturbances have both the highest maximum value (1.866) and the largest range (0.851). 

On the contrary, re-disturbances have the smallest maximum value and range, indicating that 

these disturbances tend to affect a smaller area compared to new and old disturbances, and also 

show less variability. However, the mean values for all types of disturbances are fairly close 

(between 1.11 and 1.13), suggesting that, on average, the area affected by different types of 

disturbances is relatively similar. 
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5 Discussion 

5.1 Performance of RPAS LiDAR Dataset 

The analysis of the accuracy of the LiDAR dataset reveals a great variance between the sites. 

The high variance is not always correlated with the ecosite, seismic line type or regeneration 

status. This suggests that apart from the strata designed to capture the most important variables, 

more environmental factors have a substantial influence on the accuracy. 

Firstly, slope seems to be a major factor in creating error in LiDAR measurements. The rapid 

terrain changes on sloped sites were found to quickly amplify terrain error, and therefore lead 

to less accurate measurements. Interestingly, on some slopes this results in overestimation of 

the ground surface, while on other slopes it leads to an underestimation of the ground surface. 

For the majority of sites the RPAS LiDAR tends to overestimate the ground surface. While this 

might correspond to a higher gradient in some sites, it is very persistent throughout the wetland 

sites, with no substantial slope. This is likely explained by the shrubby vegetation found in these 

wetland sites, which has been noted by Moudrý et al., 2020 to block laser pulses from 

penetrating to the actual ground surface or confuse the ground classification. On the other hand, 

underestimation of the ground surface only occurred in Mesic Upland and Dry Upland, on 

sloped sites (more on slope in chapter 5.1.1). 

5.1.1 Differences between the Ecosites 

Substantial differences between the ecosites were notable. Especially Mesic Upland sites stood 

out, for their high RMSE of 23 cm and their high overestimation of the ground surface. Several 

factors may contribute to this low accuracy: Mesic uplands are often dominated by deciduous 

stands of aspen, which surround the seismic lines and limit the angles from which LiDAR can 

penetrate to the ground surface. Another being that even if the line is stuck in arrested 

succession, the surface vegetation of seismic lines is often complex and overgrown by 

broadleaved bushes further limiting laser pulses reaching the ground surface. Finally, the sloped 

nature of these sites combined with few points reaching the ground surface leads to large 

interpolation errors between points. This observation echoes findings by Bater and Coops, 2009 

which highlighted similar problems in sloped terrain. 

 

Dry upland sites are found to have a much better RMSE of 17 cm and a median of -6 cm, 

making it the best performing ecosite. While slope may still be a factor, the surrounding forest 
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stands are generally thinner, dominated by spruce and pine trees, and contain less deciduous 

trees, than the mesic uplands, which allows more laser pulses to reach the ground surface. The 

ground surface itself is defined by lichen and thin sedges such as Carex siccata and Carex 

tonsa. The low complexity of the vegetation covering the ground is likely another factor leading 

to the good results as it hardly confuses the ground classification or hinders laser penetration. 

The wetland ecosites have an RMSE of 18 cm, which is only slightly worse than the Dry Upland 

sites. This is likely a consequence of the thinner tree cover, often consisting of coniferous trees 

such as tamarack and black spruce, which is easier to penetrate by laser pulses. Additionally, 

the sites display a complex surface structure consisting of sphagnum and feather mosses that 

are often covered by shrubby vegetation, which may hinder the effective penetration to the 

actual ground surface in peatlands. The occurrence of complex surface vegetation is a possible 

explanation for the overestimation of the ground surface by 10 cm. Another reason for the 

overestimation may be that the ground surface often consists of live plant matter, which is 

difficult to define and may thus confuse the ground classification of LiDAR pulses. 

5.1.2 Differences between seismic lines  

During the analysis a major factor determining the accuracy of the LiDAR on seismic lines was 

the regeneration status. A regenerated status decreased RMSE on conventional lines from 14 

cm to 24 cm and from 17 cm to 19 cm on “low impact” lines. Regeneration also increased the 

median offset to 14 cm on conventional and 12 cm on “low impact” lines. One major driving 

factor of the lower accuracy is the high presence of outliers, that resulted from vegetation being 

mistaken for ground or causing interpolation error. While the presence of thick vegetation 

appears to be a major obstacle to achieving very accurate ground measurements, the higher 

error on regenerating conventional lines compared to "low impact" lines might be amplified by 

the fact that more of these sites were located on sloped terrain. 

For lines in a state of arrested succession, conventional lines achieved the highest accuracy. The 

superior performance compared to “low impact” lines may be explained by the wider canopy 

opening, allowing the LiDAR to penetrate from more angles. The reduced ground complexity 

of the lines in a state of arrested succession, likely contributed to a generally low median offset 

of 0 cm on conventional and 4 cm on “low impact”. 
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5.1.3 LiDAR Accuracy on and off Seismic Lines 

When comparing the accuracy of measurements on seismic lines in a wetland vs. the 

surrounding areas, it becomes apparent that measurements off seismic lines are less accurate 

than on seismic lines. One major factor driving the higher RMSE and offset might be the higher 

level of microtopography, creating small scale steep gradients that are more difficult to detect 

by the LiDAR. Additionally, the microforms often form the habitat for dense shrubby 

vegetation, making the differentiation of hummocks and shrubs complex. Another factor 

driving less accurate measurements off seismic lines is the higher tree cover lowering the point 

density on the ground. 

5.1.4 Performance of RPAS LiDAR vs. Aircraft LiDAR 

This study underscores the comparative advantage of airborne LiDAR vs. RPAS LiDAR in 

various settings. The observed underestimation of ground surfaces in Dry Upland sites by both 

LiDAR systems, highlights uniqueness of this terrain type, however the airborne LiDAR seems 

to handle the complexity of increased gradients much better. The fact that both LiDAR systems 

overestimate terrain in Wetlands and Upland Mesic sites, with a more pronounced 

overestimation by RPAS LiDAR, is noteworthy. The consistency of performance by airborne 

LiDAR across different states of succession and regenerating lines underscores its robustness 

and reliability. This finding aligns with the work of (Zolkos et al., 2013), who highlights the 

ability of airborne LiDAR to deliver reliable data across varying vegetation stages, which they 

attributed to the superior canopy penetration capability. 

The substantially better performance of the aircraft LiDAR using a point density of only 30 

points per m2 compared to the RPAS LiDAR using a point density of 147 points per m2 was 

unexpected and suggests that other factors than point density are important to the performance 

of LiDAR systems. One factor might be the Zenmuse L1 sensor that is constricted in size and 

weight in order to fit on RPAS vehicles, which limits the quality of the sensors electronics, 

lowering the accuracy of the laser measurements to 10 cm horizontally and 5 cm vertically. In 

contrast, the Riegl VQ-1560ii has the ability to perform full waveform analysis, meaning that 

it can detect very small return time differences, which according to the manufacturer allows for 

an accuracy of 2 cm horizontally and vertically. 

A further variable might be the less stable platform provided by the RPAS system, flying in 

more turbulent lower atmospheric layers, which coupled with the less accurate IMU-unit might 
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lead to larger offsets between measurements. The GNSS RTK system of the DJI Matrice 300 

also comes with a ground station that is difficult to adjust on the horizontal axis, especially 

under field conditions. This might also increase horizontal error. 

Another factor that might contribute to the better performance of the aerial LiDAR accuracy, 

may be a superior workflow employed by the provider Airborne Imaging Inc.. Adjusting one 

workflow to a number of different ecosites is difficult, as has been shown by (Nelson et al., 

2022). A better processing workflow might adjust parameters in different terrain types and 

correct for over and underestimation of the ground surface. This however is speculative, as no 

specifics on the processing workflow employed by Airborne Imaging Inc. were published. 

5.1.5 Comparison to other Studies 

The accuracy of the RPAS LiDAR is similar to the results achieved by Nelson et al. 2022. The 

multispectral LiDAR aircraft based measurements performed in similar environments located 

close to the study sites used for this study. Nelson et al.,2022, achieved an RMSE of 19 cm 

which is close to the 20 cm of our study. 

The photogrammetry study performed by Lovitt et al. 2017 in wetland and upland areas 

achieved very similar results to our study with slightly worse results in low complexity wetland 

areas, somewhat comparable to our measurements on seismic lines in a state of arrested 

succession in wetland areas. In these areas this work achieved achieved an RMSE of 12.8 cm 

and a median offset of 9.1 cm compared to the 21 cm RSME and median offset of -10 cm of 

the photogrammetry. When it came to complex terrain roughly comparable to regrown seismic 

lines this study on average achieved an RMSE of 22 cm and a median offset of 13 cm, which 

compares very favourably to the 42 cm RMSE and 47 cm offset in Lovitt et al., 2017. 

The superior performance of the LiDAR in the complex terrain encountered in the boreal 

landscape, might be explained by the higher point density of 147 p/m2 that exceeds the point 

density of the older photogrammetry system of 84 points per m2. Newer higher resolution 

photogrammetry sensors like the Zenmuse P1 sensor might be able to improve the accuracy but 

will likely struggle to match the performance of modern LiDAR systems, as the SfM feature 

matching algorithms struggle to reliably identify tie points in complex terrain (Mancini et al., 

2013). Therefore, using RPAS based LiDAR or aircraft LiDAR is preferable in most contexts 

when trying to identify the ground surface in peatlands. 
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5.2 Performance of Methods to quantify Microtopography 

5.2.1 Surface Area Index 

The method of quantifying microtopography via the SAR was validated with mixed results. In 

general an overestimation of the surface area was observed. On the seismic lines in a state of 

arrested succession the relationship between in-situ and LiDAR measurements seems to hold 

much better. This suggests that this SAR should work reasonably well in quantifying 

microtopography on seismic lines that are in need of restoration work. 

Overestimation was more pronounced on regenerating seismic lines, especially in wetlands. 

Classes that had a higher RMSE compared to the RTK measurements, such as UD 3, UL 1 and 

WT 3, tended to also overestimate the SAR to a larger degree. The denser surface complexity 

of the regenerated sites and the higher ground vegetation likely contributed to the exaggeration 

of microform height and lowered accuracy. 

Other reasons for the mixed performance of SAR might be connected to the different ways 

microtopography was measured. While the LiDAR based SRI measured the difference to the 

surrounding cells in a matrix, the in-situ measurements measured the SAR in a line. This might 

introduce a bias in the measurements, as many seismic lines feature trails, or vehicle paths, 

which are often located adjacent to the central transect and create microtopography, which is 

only captured by the LiDAR derived SAR. However, the relatively low number of transects 

available to validate this method limits the validation of SAR. The transects to check the SAR 

were time consuming to measure, therefore ideally a quicker method of validating the accuracy 

of the SAR would be desirable for future studies investigating SAR. 

5.2.2 Depth-to-Water 

Following the workflow proposed by Rahman et al. 2017, the attempt to create a metric that is 

reflective of depth to water, yielded very good results in the peatland area it was implemented 

in. The RMSE for water table measurements of 6.5 cm outperforms the accuracy of the surface 

measurements in the fen area which had an RMSE of 19 cm. This suggests low points can be 

identified very accurately. The accuracy of the results are very close to the results Rahman et 

al. 2017, which achieved a RMSE of 10 cm in favourable terrain and a RMSE of 22 cm for the 

whole study area including upland areas. 
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The RMSE of 12.7 cm and the median offset of 5.1 cm for the DTW method compares 

unfavourably to the more accurate water table measurements. This is likely a consequence of 

the LiDAR performing poorly when measuring the fen surface (RMSE of 19 cm). 

The basic assumption of the Rahman et. al. 2017 workflow relies on open water being equal or 

close to the water table. This in turn relies on open water being present and being detectable 

from spectral information from the photogrammetry data. Since the workflow of this study 

relies only on LiDAR measurements and cannot identify open water surfaces, it should only be 

applied in areas with a high certainty of open water being present. This limits the measurements 

of DTW metrics to wetlands with low gradients and a relatively high water table. The workflow 

performs poorly in measuring microtopography on slopes mainly due to the fact that it relies 

on a relatively large moving window of 7 meters to identify low points representative of the 

water table. Although the water table may still be measured correctly, the DTW is not a useful 

metric of microtopography in this context, as it will spike to large values, insensitive to 

microforms. 

5.2.3 Moving Window  

The moving window method using the average height of the surrounding three metre window 

performed well in measuring the average range between hummocks and hollows. For the study 

area in the fen, the RMSE was only 13.1 cm and the median 8.2 cm. It therefore appears to be 

reliable in detecting the variability of microforms in the fen. The moving window approach was 

however problematic in sloped environments, as the moving window will tend to over and 

underestimate the ground surface in these environments visible in Figure 25. While a smaller 

window size would be beneficial in sloped environments, it would also negatively affect the 

measurements on seismic lines. This negative effect arises due to the local bending of the 

moving window average, consequently diminishing the value of statistical metrics such as mean 

height. 

The hummock and hollow classification scheme derived from this moving window approach, 

proved to be highly inaccurate, as it recorded an accuracy of less than 50 %. This might be a 

consequence of the layout of the verification dataset, as the original purpose of the dataset was 

to test the performance of the LiDAR and it therefore included many intermediate points 

between hummocks and hollows, that were difficult to classify. Better results might be 

achieved, if these points were placed more centrally on microforms, , which however would 

not test the horizontal accuracy of the system as well.  
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5.3 A Study of Microtopography in a Fen Area 

5.3.1 Distance to Water Workflow 

 

Figure 24 Distance to Water map shows that new disturbances are clearly visible, while older 
disturbances start to blend in with the surroundings. Satura%on obscuring microtopography 

measurements occurs in upland areas. 

The impact of the seismic activity on the microtopography in the wetland area was observed to 

be significant for the DTW method. When comparing disturbed and undisturbed areas, a slight 

reduction of hummock height by 2 cm, and a reduction of 3 cm for the mean depth-to-water 

values was observed in disturbed areas. This indicates a depression of seismic lines compared 

to the surroundings. However, the measured mean offset of the LiDAR-DTM on seismic lines 

was measured to be 9 cm vs 10 cm in undisturbed areas. Therefore, the actual difference 

between the mean DTW might be slightly lower than measured. Nevertheless, a considerable 

difference between the areas remains. The difference in maximum height measured between 

the areas is very close to the results of Lovitt et al. 2018, which were 24 cm in undisturbed areas 

and 21 cm in disturbed areas. Since the photogrammetry of Lovitt et. al. 2018, was able to 

penetrate beneath the water surface, the mean depth to water was negative for both areas, with 

disturbed areas being depressed by 15 cm, a significantly greater difference than the 3 cm this 

study measured. As visible in Figure 24 the DTW method, quickly loses its utility in measuring 

microtopography when exposed to gradients. 
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5.3.2 Moving Window Workflow 

 

Figure 25 Map of moving window shows new disturbances clearly but struggles more than 
DTW to iden%fy older lines. 

The microform method also showed significant differences between the disturbed and 

undisturbed areas. The disturbed areas were shown to have on average 2 cm deeper hollows, 

and 1.5 cm lower hummocks. The range between disturbed and undisturbed areas was similar 

with only 5 mm difference. The biggest difference apparent in the data is the much lower mean 

height of -0.5 cm in disturbed areas vs. 5 cm in undisturbed areas. This suggests the 

microtopography is severely depressed in disturbed areas (as visible in Figure 25). The study 

of Lovitt et. al. 2018 recorded a much bigger range difference between disturbed and 

undisturbed areas, but the ability of the photogrammetry to look beneath the water surface likely 

contributed to this. The mean height differences between disturbed and undisturbed areas 

recorded by Lovitt et. al. 2018 were much smaller, this might be due to the smaller moving 

window size of 2 metres compared to the 3 metre window used by this study. 
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5.3.3 Surface Area Ratio Workflow  

 

Figure 26 Surface Area Ra%o map shows disturbances clearly even through the upland area. 

When comparing the surface area between the disturbed and undisturbed areas in the fen (as 

visible in Figure 25), it becomes clear that there are significant differences in the maximum 

surface area. Undisturbed areas experienced significant spikes in surface area compared to the 

disturbed areas. It is unclear what causes these extreme spikes to up to 4.1 SAR, but they might 

be a result of faulty ground classification, which includes shrubs or trees, therefore dramatically 

increasing the local surface area. With a value of 1.86 the maximum surface area on seismic 

lines is dramatically lower at 1.86 SAR. Therefore, the maximum surface area seems to be an 

unreliable measure in detecting differences between disturbed and undisturbed areas. When 

comparing the mean a slightly lower value is measured for the disturbed areas, indicating a 

slightly lower surface area. If this is a result of the spike in maximum values is however difficult 

to determine. 

5.3.4 Differences between Seismic Line Types 

The analysis of the different seismic line types revealed significant differences of the mean, 

between the older seismic lines, the newly cut lines and the re-disturbed lines. This is observed 

throughout all different quantification methods. The information revealed by these different 

quantification methods is however contradictory. 
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When analysing DTW the old seismic lines appear to have the greatest height maximums and 

have the highest average. The average distance to water however is very similar to the newly 

created lines. The newly created lines appear to suffer from a reduction of maximum DTW. 

This suggests that the microtopography on old seismic lines has not recovered very much on 

average, but maximum DTW has returned to the level of the surrounding fen. 

The re-disturbed lines suffer from a notable reduction of mean height and maximum height. 

This suggests that re-disturbance might have a compounding effect on the depression of seismic 

lines. This could be a result of the repeated driving of heavy machinery. 

Drawing conclusions from the moving window method is more difficult, as mean height does 

not vary much between lines. Bigger differences are observable between the ranges of newly 

created lines with 33 cm and a range of 38 cm on the re-disturbed and old seismic lines. For re-

disturbed lines the range is a result of higher maximum values, while on old disturbed lines the 

higher range is a result of lower minimum values. 

The same difficulty persists when analysing the SAR method, as mean values were judged to 

be significantly different, but are difficult to evaluate. The highest mean value 1.13 was 

recorded for newly disturbed lines, while old disturbed lines recorded a smaller mean with a 

mean of 1.12 and re-disturbed measured 1.11. This would suggest the microtopography is 

highest on newly created seismic lines. 

The SAR and Moving Window methods are more affected by microtopography on the side of 

the lines, which may create noise. DTW is much less affected by the surrounding environment, 

and therefore may create more reliable results, when analysing small scale variation. 

5.3.5 Applicability of Quantification Methods 

When assessing the microtopography of an area, it is essential to consider various factors that 

can influence the results. Each method employed in this quantification process possesses its 

own set of advantages and limitations. Limiting this comparison is the relatively small amount 

of validation data for all quantification workflows. 

The DTW method stands out, as the DTW is the most fundamental variable to explaining 

seedling survival. It provides researchers and restoration managers with an easily 

understandable metric that allows them to determine greenhouse gas emissions and specific 
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plant growth limitations linked to the water table. Therefore, allowing a more thorough analysis 

of the effects by disturbance. It is not affected as much by the surrounding microtopography 

and is therefore more useful when analysing smaller sample groups, as done in chapter 4.2. The 

methodology is however in its current state limited in its application to fen wetlands with a 

relatively low gradient. However, the workflow to determine DTW has the potential to be 

refined further (more in chapter 5.3.6). If the accuracy of this method remains satisfactory using 

the lower resolution airborne LiDAR still remains to be tested. If successfully tested this method 

would enable large scale surveys on the impact of seismic line disturbance in wetland areas. 

The microform classification method using the local average has the advantage of being 

applicable in more sloped areas and will be able to capture variation between the surrounding 

of the seismic lines and seismic lines. It might therefore be especially useful when measuring 

disturbance in slightly sloped contexts such as bogs and upland areas, while still producing 

useful results in fen areas. 

The SAR largely reflects the results of the other methods but appears more susceptible to faulty 

measurements. It is important to note that the SAR method was tested throughout more 

challenging environments, therefore limiting the comparison to the other methods. The values 

generated by this method are also more difficult to analyse by other researchers. It therefore 

might not be useful when comparing seismic lines to their surroundings. It however might be 

useful in the context of restoration planning, as it has been shown by this study that low values 

generated by this method are generally reliable. Therefore, seismic lines with a low level of 

microtopography should be identifiable by the SAR methods. 

5.3.6 Scaling the Workflows and Future Research Directions 

The good accuracy of the aircraft LiDAR throughout all ecosites and line types, suggests that 

the quantification methods should be transferable to measure microtopography on bigger scales. 

The quality of the DTM at 50 cm might be too coarse to capture the surface variation in a 

hummock and hollow landscape, according to Stovall et al., 2019. Their findings suggest a steep 

drop off in the sensitivity of microtopographic at a pixel size of 50 cm. Their recommended 

pixel size for detection of hummocks and hollows was around 25 cm, which allowed for the 

ideal segmentation of features. Theoretically the point density of 30 points per m2 of the aircraft-

based LiDAR system, would allow for the production of higher resolution DTMs. The 

development a new processing workflow to convert the LiDAR point clouds into DTMs 
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however exceeded the scope of this thesis. Future research should therefore aim to adapt the 

workflows proposed in this thesis to higher resolution DTMs derived from the aircraft LiDAR. 

The novel DTW workflow implemented in this thesis, still has considerable room for 

improvement, using the raw LiDAR point clouds and more sophisticated spatial interpolation 

methods. This could create smoother groundwater surfaces, potentially increasing its 

applicability to more sloped terrain and further increasing its accuracy. This could allow for 

large scale analysis of disturbances in wetland areas. 

5.4 Potential Sources of Error 

All data used in this study are subject to a variety of error sources during collection, processing, 

and analysis. Firstly, the RTK GNSS is prone to inaccuracies as a result of variations in satellite 

connectivity and radio linkages. These inaccuracies are often influenced by factors, such as 

canopy cover (Roosevelt, 2014). The heavy canopy encountered on some regenerated sites 

sometimes forced the repositioning of transects, which may introduce bias. Another potential 

source of error and variability lays in the measurement techniques employed among field staff. 

To minimize these errors, only measurements within an acceptable standard deviation were 

used. We also ensured uniformity in field personnel to curtail discrepancies in ground 

measurements. 

The potential errors related to the LiDAR measurements, were discussed at length in chapter 

5.1 and the associated uncertainties in the quantification methods in chapter 5.2. 

The analysis of the fen area relied on shapefiles supplied by the FLM, these however will at 

times include parts of the surrounding area, likely reducing the difference between disturbed 

and undisturbed areas. 
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6 Conclusion 

The overarching objective of this thesis was to determine a workflow that allowed for the 

quantification of microtopography via remote sensing. Within the broader objective, the first 

objective of this research was to evaluate the performance of the RPAS LiDAR dataset across 

different ecosites and seismic lines. This was achieved by studying the dataset's accuracy in 

various environmental conditions and correlating the variations with influential factors such as 

vegetation and ecosite type. The evaluation included a detailed comparison of the RPAS LiDAR 

dataset's performance with the aircraft-based LiDAR dataset collected during the same time 

period. 

This analysis yields two key findings. Firstly, it reveals substantial differences between sites 

based on environmental conditions. More precisely it identifies slope and vegetation as major 

influencers on the dataset's accuracy, with more complex terrains and denser vegetation 

generally leading to less accurate measurements. Secondly, it reveals the superior performance 

of airborne LiDAR compared to RPAS LiDAR across different ecosites and vegetation stages, 

demonstrating its robustness and reliability. 

The second objective of this study was to quantify microtopography, here the SAR emerged as 

a valuable tool for identifying seismic lines that require restoration. Yet, it was found to 

overestimate the surface area on regenerating lines and complex surface structures. The method 

of quantifying DTW proved very accurate at measuring the water table in fen areas but is limited 

in its applicability by the necessity of open water presence, high water tables, and low gradient 

terrains. Finally, the microform method effectively measures average hummock-hollow ranges 

in fen areas, but the presence of steeper slopes proved to lead to both over- and underestimation. 

This thesis finds that due to the substantial differences between quantification methods, the 

selection of the quantification method must be highly dependent on the goals of the study and 

the characteristics of the study area. 

When applying these methods on a poor fen, it revealed that disturbed areas suffered from a 

significant depression of microforms and a reduction of mean DTW. Therefore, their ability to 

regenerate was likely weakened. The investigation of differences between newly constructed 

seismic lines, re-disturbed lines and old lines revealed significant differences, indicating that 

especially re-disturbed lines suffer from a depression of their microtopography. 
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The high quality of the aircraft-based LiDAR system in a wide variety of terrain suggests that 

the methodologies to quantify microtopography are likely scalable to the entire BERA study 

region. This would allow the detection of seismic lines with diminished microtopography and 

therefore allow better allocation of restoration practices such as mounding. Resulting from this 

would be cost savings, less unnecessary disruption of locations exhibiting robust 

microtopographic recovery and a reduction of greenhouse gas release. 
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Appendix 
 

LiDAR Workflow 
Down below is the code used to process the LiDAR dataset. The first code preprocesses the point 
cloud, to get rid of a diverse range of artefacts, encountered during the processing. The second part 
of the code calculated in R thins the points down to a uniform 147 points per m2. The third part of the 
code classifies the ground and creates the input for the DTM genera;on conducted in ArcGISpro.  

@	echo	off	
::	Batch	script	for	preprocessing	LiDAR	data	to	prepare	the	creation	of	DEM,	
DSM,	and	CHM	
::	0.	Metadata	
::	-	lasvalidate	Verify	validity	of	the	dataset	
::	-	lasindex	
::	-	lasinfo	
::	-	lasgrid	
::	1.	Flightline	cleansing	
::	-	lasclip	
can	be	separated	
::	-	lassplit	
::	-	lasoverlap	
	
flightlines	and	height	difference	
Create	a	spatial	index	
Metadata	
Generate	point	density	raster	
Clip	flightlines	to	flight	boundaries	so	flightlines	
Divide	file	into	flightlines	based	on	GPS-time	gaps	
Generate	raster	respectively	with	the	amount	of	
	
::	-	lasoverage	
::	2.	Data	cleansing	
::	-	lastile	
::	-	lasduplicate	
::	-	lasnoise	
::	Author:	Jasper	Koch,	Marlis	Hegels	
::	Munich,	February	2023	
	
REM	:::::::::::::::	
REM	::	Set	paths	::	
REM	:::::::::::::::	
	
::	sets	the	path	to	the	folder	that	stores	the	las	binary	files	
SET	PATH=%PATH%;C:\Users\marlis.hegels\Desktop\LAStools\bin;	
::	sets	the	path	to	raw	lidar	folder	
set	RAW_LIDAR=N:\KirbySouth_L1_Summer2022\output_las	
::	sets	the	path	to	the	flight	areas	folder	
set	AREAS=N:\Flightareas	
::	set	the	path	to	the	folder	that	will	contain	the	results	and	the	raw	file	
set	FILES=N:\KirbySouth2022_preprocessed	
	
REM	::::::::::::::::::::	
REM	::	Set	parameters	::	
REM	::::::::::::::::::::	
	
set	CORES=30	
REM	lasgrid	
set	STEP_PD_GRID=1	
set	PD_GRID=100	
REM	lassplit	
set	TIME_GAP=0.1	



 

IX 
 

REM	lastile	
set	TILE_SIZE=60	
set	TILE_BUFFER=5	
REM	lasnoise	
set	STEP_XY=1	
set	STEP_Z=1	
set	POINTS=20	
set	SA=32	
echo	Parameter	settings:	
echo	%CORES%					-	Cores	
echo	%STEP_PD_GRID%	
echo	%PD_GRID%			-	lasgrid:	grid	size	for	point	density	raster	in	centimeter	
echo	%TIME_GAP%	-	lassplit:	GPS-time	gap	to	separate	flightlines	

echo	%TILE_SIZE%	-	lastile:	tile_size	
echo	%TILE_BUFFER%	-	lastile:	buffer	 

echo	%STEP_XY%	
echo	%STEP_Z%	
echo	%POINTS%	
echo	%SA%	
	
-	lasnoise:	step_xy	
-	lasnoise:	step_z	
-	lasnoise:	isolated	
-	lasnoise:	maximum	scan	angle	
-	lasgrid:	grid	size	for	point	density	raster	in	meter	
::	For	each	las	file	in	the	RAW_LIDAR	folder	
SETLOCAL	ENABLEDELAYEDEXPANSION	
for	/r	"%RAW_LIDAR%"	%%i	in	(*.las)	do	(	
								
	REM	::::::::::::::::::::::	
								REM	::	Manage	variables	::	
								REM	::::::::::::::::::::::	
								::	file	path	of	input	raw	LiDAR	file	
								set	FP=%%i	
								echo	!FP!	
								::	file	name	w\	extension	
								REM	echo	%%~nxi	
								::	file	name	w\o	extension	
								set	FN=%%~ni	
								echo	!FN!	
								::	area	letter	
								set	AREA=%%~ni	
								set	AREA=!AREA:~-1,1!	
								echo	!AREA!	
	
								REM	:::::::::::::::::::::::	
								REM	::	Manage	file	paths	::	
								REM	:::::::::::::::::::::::	
	
								::	create	an	output	folder	
								if	exist	%FILES%\!FN!	rmdir	/s	/q	%FILES%\!FN!	
								mkdir	%FILES%\!FN!	
								::	create	folder	structure	
								mkdir	%FILES%\!FN!\00_Info	
								mkdir	%FILES%\!FN!\01_Clip	
								mkdir	%FILES%\!FN!\02_Flightlines	
								mkdir	%FILES%\!FN!\03_CleanedFlightlines	
								mkdir	%FILES%\!FN!\03_FlightlineRaster	
								mkdir	%FILES%\!FN!\04_Tiles	
								mkdir	%FILES%\!FN!\05_NoDups	
								mkdir	%FILES%\!FN!\06_Noise	
	
REM	:::::::::::::::::::::	
REM	::	START	COMPUTING	::	



 

X 
 

REM	:::::::::::::::::::::	
echo	%date%	%time%	
::	0.	Metadata	
-	Start	computing	

::	0.1	Verify	the	validity	
lasvalidate	-i	!FP!	^	
-o	%FILES%\!FN!\00_Info\validate.xml	
echo	%date%	%time%	-	lasvalidate	done	 

::	0.2	Spatial	index	of	input	las-file	lasindex	-i	!FP!	-dont_reindex	
echo	%date%	%time%	-	lasindex	done	 

::	0.3	Metadata	txt-file	
lasinfo	-i	!FP!	^	
-cd	-histo	scan_angle	1	^	
-odir	%FILES%\!FN!\00_Info	-odix	_INFO	-otxt	echo	%date%	%time%	-	lasinfo	done	 

::	0.4	Generate	point	density	raster	
lasgrid	-i	!FP!	-last_only	^	
-density	-step	%STEP_PD_GRID%	^	
-use_bb	-nad83	-utm	12U	^	

-odir	%FILES%\!FN!\00_Info	-odix	_PD%PD_GRID%cm	-oasc	echo	%date%	%time%	-	lasgrid	done	 

::	1.	Flightline	cleansing	
::	1.1	Clip	LAS	file	with	flight	line	shape	file	so	flightiness	can	be	::	separated	
lasclip	-i	!FP!	^	
-poly	%AREAS%\!AREA!.shp	^	
-odir	%FILES%\!FN!\01_Clip	-olaz	
echo	%date%	%time%	-	lasclip	done	 

::	1.2	Divide	the	flightlines	based	on	GPS	time	
lassplit	-i	%FILES%\!FN!\01_Clip\*.laz	^	
-recover_flightlines_interval	%TIME_GAP%	^	
-odir	%FILES%\!FN!\02_Flightlines	-olaz	

echo	%date%	%time%	-	lassplit	done	 

::	1.3	Generate	a	raster	with	the	amount	of	flightlines	and	height	
::	difference	
lasoverlap	-i	%FILES%\!FN!\02_Flightlines\*.laz	^	
-merged	-faf	-step	%STEP_PD_GRID%	^	

-values	-elevation	-lowest	^	
-nad83	-utm	12U	^	
-odir	%FILES%\!FN!\03_FlightlineRaster	-oasc	echo	%date%	%time%	-	lasoverlap	done	 

::	1.4	Delete	overlapping	points	
lasoverage	-i	%FILES%\!FN!\02_Flightlines\*.laz	^	-faf	-remove_overage	-merged	^	
-odir	%Files%\!FN!\03_CleanedFlightlines	-olaz	echo	%date%	%time%	-	lasoverage	done	 

::	1.5	Generate	point	density	raster	
lasgrid	-i	%Files%\!FN!\03_CleanedFlightlines\*.laz	-last_only	^	-density	-step	%STEP_PD_GRID%	^	
-use_bb	-nad83	-utm	12U	^	
-odir	%FILES%\!FN!\03_FlightlineRaster	-odix	_PD%PD_GRID%cm	-oasc	echo	%date%	%time%	-	lasgrid	done	 

::	2.	Data	cleansing	
::	2.1	Make	data	manageable	by	creating	files	that	are	easier	to	::	compute	
lastile	-i	%FILES%\!FN!\03_CleanedFlightlines\*.laz	^	
-tile_size	%TILE_SIZE%	-buffer	%TILE_BUFFER%	-flag_as_synthetic	^	-odir	%FILES%\!FN!\04_Tiles	-olaz	
echo	%date%	%time%	-	lastile	done	 



 

XI 
 

::	2.2	Delete	duplicates	
lasduplicate	-i	%FILES%\!FN!\04_Tiles\*.laz	^	
	

-unique_xyz	^	
-cores	%CORES%	^	
-odir	%FILES%\!FN!\05_NoDups	-olaz	
echo	%date%	%time%	-	lasduplicate	done	 

::	2.3	Classify	noise	
lasnoise	-i	%FILES%\!FN!\05_NoDups\*.laz	^	-step_xy	%STEP_XY%	-step_z	%STEP_Z%	^	
-isolated	%POINTS%	-keep_scan_angle	-%SA%	%SA%	^	-cores	%CORES%	^	
-odir	%FILES%\!FN!\06_Noise	-olaz	
echo	%date%	%time%	-	lasnoise	done	 

								REM	::::::::::::::::::::::::::	
								REM	::	Delete	intermediates	::	
								REM	::::::::::::::::::::::::::	
								::	remove	output	folder	
								rmdir	/s	/q	%FILES%\!FN!\01_Clip	
								rmdir	/s	/q	%FILES%\!FN!\02_Flightlines	
								rmdir	/s	/q	%FILES%\!FN!\03_CleanedFlightlines	
								rmdir	/s	/q	%FILES%\!FN!\04_Tiles	
								rmdir	/s	/q	%FILES%\!FN!\05_NoDups	

echo	%date%	%time%	-	!AREA!	done	 

)	
echo	%date%	%time%	-	Clean	all	done	pause	 

A.5.2	R	script	for	point	density	homogenization	 
#	Code	by	Marlis	Hegels	
#	Purpose:	
#	Thin	LiDAR	tiles	to	a	certain	point	density	based	on	pulses	
library(lidR)	
library(future)	
library(comprehenr)	
#	settings	---------------------------------------	
	
setwd("N:/KirbySouth2022_preprocessed")	
las_raw	=	"N:/KirbySouth_L1_Summer2022/output_las"	
pd=147	#achieved	point	density	
res_thinning	=	1	#	pixel	size	used	to	filter	the	points	
input_folder	=	"06_Noise"	
output_folder	=	paste("07_ThinnedPD",	as.character(pd),	sep="")	
areas	=	list.files(las_raw,	pattern	=	"\\.las")	
areas	=	to_vec(for	(area	in	areas)	substr(area,1,16))	
	
for	(area	in	areas)	{	
		#	create	an	output	folder	
		dir.create(paste(area,	"/",	output_folder,	sep=""),	showWarnings	=	F)	
		#	Delete	all	files	in	the	output	folder	
		unlink(paste(area,	"/",	output_folder,	"/*",	sep=""))	
		#	for	every	tile	
		filenames	=	list.files(paste(area,	"/",	input_folder,	"/",	sep=""))	
		for(file	in	filenames)	{	
				cat(area,	file,	"\n")	
				las	=	readLAS(paste(area,	"/",	input_folder,	"/",	file,	sep=""))	
				las	=	retrieve_pulses(las)	
				thinned	=	decimate_points(las,	homogenize(pd,res_thinning,use_pulse	=	T))	
				density	=	rasterize_density(thinned,	res=1)	
				plot(density)	
				writeLAS(thinned,	paste(area,	"/",	output_folder,	"/",	file,	sep=""))	
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A.5.3	Batch	script	for	LAStools	to	classify	points	 
@	echo	off	
::	Batch	script	for	preprocessing	LiDAR	data	to	prepare	the	creation	of	DEM,	DSM,	and	CHM	
::	3.	Classifying	
::	-	lasground	
::	-	lasthin	
::	-	lasclassify	
::	-	lasheight	
::	-	lasclassify	
::	4.	Merging	
::	-	lasmerge	
::	5.	Metadata	preprocessed	output	
::	-	lasinfo	Metadata	
::	-	lasindex	Generate	spatial	index	
::	Author:	Jasper	Koch,	Marlis	Hegels	
::	Munich,	February	2023	 

REM	:::::::::::::::	
REM	::	Set	paths	::	
REM	:::::::::::::::	
	
::	sets	the	path	to	the	folder	that	stores	the	las	binary	files	
SET	PATH=%PATH%;C:\Users\marlis.hegels\Desktop\LAStools\bin;	
::	sets	the	path	to	raw	lidar	folder	
set	RAW_LIDAR=N:\KirbySouth_L1_Summer2022\output_las	
::	sets	the	path	to	the	flight	areas	folder	
set	AREAS=N:\Flightareas	
::	set	the	path	to	the	folder	that	will	contain	the	results	and	the	raw	file	
set	FILES=N:\KirbySouth2022_preprocessed	
	
REM	::::::::::::::::::::	
REM	::	Set	parameters	::	
REM	::::::::::::::::::::	
	
set	CORES=30	
REM	lasthin	
set	PD=147	
set	STEP_T=0.1	
REM	lasground	
set	STEP_G=3	
set	OFFSET_G=0.1	
REM	lasclassify	
set	OFFSET_C=1.0	
echo	Parameter	settings:	
echo	%CORES%	
echo	%PD%	
echo	%STEP_T%	
echo	%STEP_G%	
echo	%OFFSET_G%		-	lasground:	offset	
echo	%OFFSET_C%		-	lasclassify:	ground_offset	
	
Classify	ground	
Thin	ground	points	
Reclassify	thinned	points	to	ground	points	
Calculate	point	height	over	the	ground	
Classify	points	>1m	over	the	ground	as	high	vegetation	

Merge	files	 

-	Cores	
-	lasthin:	max.	point	density	
-	lasthin:	step	
-	lasground:	step	
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::	For	each	las	file	in	the	RAW_LIDAR	folder	
SETLOCAL	ENABLEDELAYEDEXPANSION	
for	/r	"%RAW_LIDAR%"	%%i	in	(*.las)	do	(	
	
	
								REM	::::::::::::::::::::::	
								REM	::	Manage	variables	::	
								REM	::::::::::::::::::::::	
	
::	file	path	of	input	raw	LiDAR	file	
set	FP=%%i	
echo	!FP!	
::	file	name	w\	extension	
REM	echo	%%~nxi	
::	file	name	w\o	extension	
set	FN=%%~ni	
echo	!FN!	
::	area	letter	
set	AREA=%%~ni	
set	AREA=!AREA:~-1,1!	
echo	!AREA!	
REM	:::::::::::::::::::::::	
REM	::	Manage	file	paths	::	
REM	:::::::::::::::::::::::	
	
::	create	folder	structure	
mkdir	%FILES%\!FN!\08_Ground	
mkdir	%FILES%\!FN!\09_GroundThinned	
mkdir	%FILES%\!FN!\10_Classified	
mkdir	%FILES%\!FN!\11_Height	
mkdir	%FILES%\!FN!\12_Reclassified	
mkdir	%FILES%\!FN!\13_Merged	
mkdir	%FILES%\!FN!\14_Raster	
REM	:::::::::::::::::::::	
REM	::	START	COMPUTING	::	
REM	:::::::::::::::::::::	
echo	%date%	%time%	
-	Start	computing	

::	3.	Classifying	
::	3.1	Classify	ground	
lasground	-i	%FILES%\!FN!\07_ThinnedPD%PD%\*.laz	^	-compute_height	-ignore_class	7	^	
-step	%STEP_G%	-offset	%OFFSET_G%	^	
-cores	%CORES%	^	
-odir	%FILES%\!FN!\08_Ground	-olaz	
echo	%date%	%time%	-	lasground	done	 

::	3.2	Thin	ground	
lasthin	-i	%FILES%\!FN!\08_Ground\*.laz	^	-ignore_class	1	-classify_as	14	^	
-lowest	-step	%STEP_T%	^	
-cores	%CORES%	^	
-odir	%FILES%\!FN!\09_GroundThinned	-olaz	
echo	%date%	%time%	-	lasthin	ground	done	 

::	3.3	Reclassify	thinned	points	to	ground	points	
lasclassify	-i	%FILES%\!FN!\09_GroundThinned\*.laz	^	
-change_classification_from_to	2	13	^	
-change_classification_from_to	14	2	^	

-cores	%CORES%	^	
-odir	%FILES%\!FN!\10_Classified	-olaz	
echo	%date%	%time%	-	lasclassify	thinned	ground	done	 

::	3.4	Recalculate	point	height	above	ground	
lasheight	-i	%FILES%\!FN!\10_Classified\*.laz	^	
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-cores	%CORES%	^	
-odir	%FILES%\!FN!\11_Height	-olaz	

echo	%date%	%time%	-	lasheight	done	 

::	3.5	Classify	points	1	meter		above	the	ground	as	high	vegetation	
lasclassify	-i	%FILES%\!FN!\11_Height\*.laz	^	
-ground_offset	%OFFSET_C%	-small_trees	^	
-cores	%CORES%	^	
-odir	%FILES%\!FN!\12_Reclassified	-olaz	

echo	%date%	%time%	-	lasclassify	high	vegetation	done	 

::	4	Merging	the	file	
lasmerge	-i	%FILES%\!FN!\12_Reclassified\*.laz	^	-drop_synthetic	^	
-o	%FILES%\!FN!\13_Merged\!FN!_PD%PD%.las	
echo	%date%	%time%	-	lasmerge	done	 

::	4.1	Spatial	index	of	output	las-file	
lasindex	-i	%FILES%\!FN!\13_Merged\!FN!_PD%PD%.las	-dont_reindex	echo	%date%	%time%	-	lasindex	done	 

::	5.	Metadata	preprocessed	output	
::	5.1	Compute	Metadata	
lasinfo	-i	%FILES%\!FN!\13_Merged\!FN!_PD%PD%.las	^	-cd	-histo	scan_angle	1	^	
-odir	%FILES%\!FN!\13_Merged	-odix	_INFO	-otxt	
echo	%date%	%time%	-	lasinfo	done	 

REM	::::::::::::::::::::::::::	
REM	::	Delete	intermediates	::	
REM	::::::::::::::::::::::::::	
::	remove	output	folder	
rmdir	/s	/q	%FILES%\!FN!\08_Ground	
rmdir	/s	/q	%FILES%\!FN!\09_GroundThinned	
rmdir	/s	/q	%FILES%\!FN!\10_Classified	
rmdir	/s	/q	%FILES%\!FN!\11_Height	

echo	%date%	%time%	-	!AREA!	done	 

echo	%date%	%time%	-	Classify	all	done	pause	 
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